深度学习:激活函数曲线总结

深度学习:激活函数曲线总结

在深度学习中有很多时候需要利用激活函数进行非线性处理,在搭建网路的时候也是非常重要的,为了更好的理解不同的激活函数的区别和差异,在这里做一个简单的总结,在pytorch中常用的激活函数的数学表达形式,同时为了更直观的感受,给出不同激活函数的曲线形式,方便查询。

import torch
import torch.nn as nn
x = torch.linspace(-4, 4, 400) # 在-4和4之间画400个点。

1. nn.leakyReLU()

给负值一个斜率,不全为零。

  • 数学公式:
    LeakyReLU ( x ) = { x , if  x ≥ 0 negative_slope × x , otherwise  \text{LeakyReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ \text{negative\_slope} \times x, & \text{ otherwise } \end{cases} LeakyReLU(x)={x,negative_slope×x, if x0 otherwise 
leakyrelu = nn.LeakyReLU(negative_slope=0.01)

negative_slope 是一个小于1的值,通常设置为0.01,用于控制在输入小于0时的输出斜率。这意味着在nn.LeakyReLU中,负数输入会乘以negative_slope,而正数输入保持不变。

  • 对应曲线:

leakyrelu

2. nn.Relu()

ReLU是一个常用的激活函数,它将负数值设为0,保持正数值不变。

  • 数学公式:
    ReLU ( x ) = ( x ) + = max ⁡ ( 0 , x ) \text{ReLU}(x) = (x)^+ = \max(0, x) ReLU(x)=(x)+=max(0,x)
relu = nn.ReLU()
  • 函数曲线:
    Relu

3. nn.Tanh()

Tanh函数将输入映射到-1和1之间

  • 数学公式
    Tanh ( x ) = tanh ⁡ ( x ) = exp ⁡ ( x ) − exp ⁡ ( − x ) exp ⁡ ( x ) + exp ⁡ ( − x ) \text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)} Tanh(x)=tanh(x)=exp(x)+exp(x)exp(x)exp(x)
Tanh = nn.Tanh()
  • 函数曲线
    Tanh

4. nn.PReLU()

PReLU是具有可学习参数的激活函数,用于克服ReLU的一些问题

  • 数学公式
    RReLU ( x ) = { x if  x ≥ 0 a x otherwise  \text{RReLU}(x) = \begin{cases} x & \text{if } x \geq 0 \\ ax & \text{ otherwise } \end{cases} RReLU(x)={xaxif x0 otherwise 
PReLU = nn.PReLU(num_parameters=1)
  • 函数曲线

PRelu

5. nn.ELU()

所有点上都是连续的和可微的,训练快

  • 数学公式:
    ELU ( x ) = { x , if  x > 0 α ∗ ( exp ⁡ ( x ) − 1 ) , if  x ≤ 0 \text{ELU}(x) = \begin{cases} x, & \text{ if } x > 0\\ \alpha * (\exp(x) - 1), & \text{ if } x \leq 0 \end{cases} ELU(x)={x,α(exp(x)1), if x>0 if x0
ELU = nn.ELU()
  • 函数曲线
    ELU

6. nn.SELU()

  • 数学公式:
    SELU ( x ) = scale ∗ ( max ⁡ ( 0 , x ) + min ⁡ ( 0 , α ∗ ( exp ⁡ ( x ) − 1 ) ) ) \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) SELU(x)=scale(max(0,x)+min(0,α(exp(x)1)))
SELU = nn.SELU()
  • 函数曲线:
    SELU

7. nn.GELU()

  • 数学公式:
    GELU ( x ) = x ∗ Φ ( x ) \text{GELU}(x) = x * \Phi(x) GELU(x)=xΦ(x)
GELU = nn.GELU()
  • 函数曲线:
    GELU

8. nn.Mish()

  • 数学公式:
    Mish ( x ) = x ∗ Tanh ( Softplus ( x ) ) \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x)) Mish(x)=xTanh(Softplus(x))
Mish = nn.Mish()
  • 函数曲线:
    Mish

9 . nn.Softmax()

  • 数学公式:
    Softmax ( x i ) = exp ⁡ ( x i ) ∑ j exp ⁡ ( x j ) \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} Softmax(xi)=jexp(xj)exp(xi)
Softmax = nn.Softmax()
y = Softmax(x)
  • 函数曲线:
    softmax

总结

感觉还是看曲线的形状,把大体的形状记住更直观些。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/152032.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud Sentinel整合Nacos实现配置持久化

sentinel配置相关配置后无法持久化,服务重启之后就没了,所以整合nacos,在nacos服务持久化,sentinel实时与nacos通信获取相关配置。 使用上一章节Feign消费者服务实现整合。 版本信息: nacos:1.4.1 Sentinel 控制台 …

基于springboot实现CSGO赛事管理系统【项目源码+论文说明】

基于SpringBoot实现CSGO赛事管理系统演示 摘要 CSGO赛事管理系统是针对CSGO赛事管理方面必不可少的一个部分。在CSGO赛事管理的整个过程中,CSGO赛事管理系统担负着最重要的角色。为满足如今日益复杂的管理需求,各类的管理系统也在不断改进。本课题所设计…

什么是Spring Web MVC

Spring Web MVC 概念 Spring Web MVC 是基于 Servlet API 构建的原始 Web 框架,从⼀开始就包含在 Spring 框架中。它的 正式名称“Spring Web MVC”来⾃其源模块的名称(Spring-webmvc),但它通常被称为"Spring MVC". 什么是Servlet Servlet 是…

回流重绘零负担,网页加载快如闪电

🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 ⭐ 专栏简介 📘 文章引言 一、回…

rust 创建多线程web server

创建一个 http server,处理 http 请求。 创建一个单线程的 web 服务 web server 中主要的两个协议是 http 和 tcp。tcp 是底层协议,http 是构建在 tcp 之上的。 通过std::net库创建一个 tcp 连接的监听对象,监听地址为127.0.0.1:8080. us…

温湿度计传感器DHT11控制数码管显示verilog代码及视频

名称:温湿度计传感器DHT11控制数码管显示 软件:QuartusII 语言:Verilog 代码功能: 使用温湿度传感器DHT11采集环境的温度和湿度,并在数码管显示 本代码已在开发板验证 开发板资料: 大西瓜第一代FPGA升级…

Vue--》简易资金管理系统后台项目实战(前端)

今天开始使用 vue3 + ts + node 搭建一个简易资金管理系统的前后端分离项目,因为前后端分离所以会分两个专栏分别讲解前端与后端的实现,后端项目文章讲解可参考:后端链接,我会在前后端的两类专栏的最后一篇文章中会将项目代码开源到我的github上,大家可以自行去进行下载运…

Notepad++安装插件和配置快捷键

Notepad是一款轻量级、开源的文件编辑工具,可以编辑、浏览文本文件、二进制文件、.cpp、.java、*.cs等文件。Notepad每隔1个月,就有一个新版本,其官网是: https://github.com/notepad-plus-plus/notepad-plus-plus。这里介绍其插件…

系列十四、Spring如何处理线程安全问题

一、线程安全问题出现的原因 Spring中出现线程安全的原因是,单实例bean中存在成员变量,并且有对这个bean进行读写的操作,因此出现了线程安全的问题。 二、案例代码 2.1、MySpringConfig /*** Author : 一叶浮萍归大海* Date: 2023/10/24 1…

【C++】详解map和set基本接口及使用

文章目录 一、关联式容器与键值对1.1关联式容器(之前学的都是序列容器)1.2键值对pairmake_pair函数(map在插入的时候会很方便) 1.3树形结构的关联式容器 二、set2.1set的基本介绍2.1默认构造、迭代器区间构造、拷贝构造&#xff0…

Mysql数据库 4.SQL语言 DQL数据查询语言 查询

DQL数据查询语言 从数据表中提取满足特定条件的记录 1.单表查询 2.多表查询 查询基础语法 select 关键字后指定要查询到的记录的哪些列 语法:select 列名(字段名)/某几列/全部列 from 表名 [具体条件]; select colnumName…

Python环境下LaTeX数学公式转图像方案调研与探讨

目录 引言方案一:基于LaTeX环境方案二:基于KaTeX(推荐) 方案三:基于Matplotlib写在最后 引言 近来,涉及到一些公式识别的项目,输入是公式的图像,输出是LaTeX格式的数学公式字符串。 这类项目一般都采用深…