图像增广:强化深度学习的视觉表现力

目录

摘要:

1. 图像增广简介

2. 图像增广的原理

3. 常见的图像增广技术

4. 如何在实际项目中应用图像增广

5.实际应用


摘要:

当今,深度学习已经在计算机视觉领域取得了令人瞩目的成就。图像增广作为一种数据处理技术,让我们在使用有限的图像数据集时能够充分挖掘图像特征,提高模型的泛化能力。本文将详细介绍图像增广的概念、原理以及如何在实际项目中应用。

1. 图像增广简介

图像增广(Image Augmentation)是一种通过对原始图像进行各种变换来生成新的图像的方法。这些变换包括旋转、翻转、缩放、剪切、色彩变换等。通过图像增广,我们可以扩大数据集的规模,增加模型训练时的输入样本。这有助于提高模型的泛化能力,从而在面对新的、未知的数据时,也能达到较高的准确性。

2. 图像增广的原理

深度学习模型在训练过程中需要大量的数据来学习特征表达。然而,在实际应用中,我们并不总是能获得足够多的数据。图像增广通过对原始图像进行各种变换,创造出具有不同视觉特征的新图像。这样一来,模型在训练时可以接触到更多样的数据,从而学习到更丰富的特征表达,提高泛化能力。

值得注意的是,图像增广并不能完全解决数据不足的问题,但它可以在一定程度上缓解这个问题,提高模型的性能。

3. 常见的图像增广技术

以下是一些常见的图像增广技术:

- **旋转**:将图像按一定的角度进行旋转。
- **翻转**:对图像进行水平或垂直翻转。
- **缩放**:对图像进行放大或缩小。
- **剪切**:在图像上随机选择一块区域,将其裁剪为新的图像。
- **色彩变换**:改变图像的亮度、对比度、饱和度等色彩属性。
- **噪声添加**:在图像中添加随机噪声。
- **仿射变换**:对图像进行平移、旋转、缩放等操作。

4. 如何在实际项目中应用图像增广

许多深度学习框架都提供了图像增广的相关工具,例如 TensorFlow、PyTorch、Keras 等。在使用这些框架时,我们可以轻松地将图像增广技术应用到我们的项目中。以下是一个使用 Keras 进行图像增广的简单示例:

from keras.preprocessing.image import ImageDataGenerator# 创建一个图像数据生成器
datagen = ImageDataGenerator(rotation_range=20,width_shift_range=0.2,height_shift_range=0.2,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)# 将数据生成器应用到训练集
train_generator = datagen.flow_from_directory(train_data_dir,target_size=(img_height, img_width),batch_size=batch_size,class_mode='categorical')

在上述代码中,我们定义了一个图像数据生成器,并设置了一些增广参数。然后,我们使用这个数据生成器对训练集进行处理。

5.实际应用

%matplotlib inline
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

导入图片: 图片大小为400*500

d2l.set_figsize()
img = d2l.Image.open('./img/1.jpg') #务必将图片放到该根目录
d2l.plt.imshow(img)

 大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。 此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):#aug增广Y = [aug(img) for _ in range(num_rows * num_cols)]d2l.show_images(Y, num_rows, num_cols, scale=scale)

 左右翻转图像通常不会改变对象的类别。这是最早且最广泛使用的图像增广方法之一。 使用transforms模块来创建RandomFlipLeftRight实例,这样就各有50%的几率使图像向左或向右翻转。

 上下翻转并不常用:

apply(img, torchvision.transforms.RandomVerticalFlip())

 随机剪切函数:剪切大小200*200像素,在10%-100%的范围内剪切,长宽比为1:2

shape_aug = torchvision.transforms.RandomResizedCrop((200,200),scale=(0.1,1),ratio=(0.5,2))
apply(img,shape_aug)

随机改变亮度

apply(img,torchvision.transforms.ColorJitter(brightness=0.5,contrast=0,saturation=0,hue=0))

 改变色调:

apply(img, torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0.5))

 创建一个RandomColorJitter实例,并设置如何同时随机更改图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。

color_aug = torchvision.transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)

 最常用的就是将各种增广方法结合起来:

augs = torchvision.transforms.Compose([torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)

 下载一个常用数据集:

#下载数据集
all_images = torchvision.datasets.CIFAR10(train=True, root="./data",download=True)
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8);

 通常对训练样本只进行图像增广,且在预测过程中不使用随机操作的图像增广。使用ToTensor实例将一批图像转换为深度学习框架所要求的格式,即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0~1。

train_augs = torchvision.transforms.Compose([torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor()]) #变成一个4d矩阵test_augs = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
def load_cifar10(is_train, augs, batch_size):dataset = torchvision.datasets.CIFAR10(root="./data", train=is_train,transform=augs, download=True)dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,shuffle=is_train, num_workers=d2l.get_dataloader_workers())return dataloader

 使用gpu进行训练数据:

#@save
#使用多GPU对模型进行训练和评估
def train_batch_ch13(net, X, y, loss, trainer, devices):"""用多GPU进行小批量训练"""if isinstance(X, list):# 微调BERT中所需X = [x.to(devices[0]) for x in X]else:X = X.to(devices[0])y = y.to(devices[0])net.train()trainer.zero_grad()pred = net(X)l = loss(pred, y)l.sum().backward()trainer.step()train_loss_sum = l.sum()train_acc_sum = d2l.accuracy(pred, y)return train_loss_sum, train_acc_sum#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,devices=d2l.try_all_gpus()):"""用多GPU进行模型训练"""timer, num_batches = d2l.Timer(), len(train_iter)animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],legend=['train loss', 'train acc', 'test acc'])net = nn.DataParallel(net, device_ids=devices).to(devices[0])for epoch in range(num_epochs):# 4个维度:储存训练损失,训练准确度,实例数,特点数metric = d2l.Accumulator(4)for i, (features, labels) in enumerate(train_iter):timer.start()l, acc = train_batch_ch13(net, features, labels, loss, trainer, devices)metric.add(l, acc, labels.shape[0], labels.numel())timer.stop()if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[3],None))test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)animator.add(epoch + 1, (None, None, test_acc))print(f'loss {metric[0] / metric[2]:.3f}, train acc 'f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on 'f'{str(devices)}')

 可以定义train_with_data_aug函数,使用图像增广来训练模型。该函数获取所有的GPU,并使用Adam作为训练的优化算法,将图像增广应用于训练集,最后调用刚刚定义的用于训练和评估模型的train_ch13函数。

batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10, 3)def init_weights(m):if type(m) in [nn.Linear, nn.Conv2d]:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)def train_with_data_aug(train_augs, test_augs, net, lr=0.001):train_iter = load_cifar10(True, train_augs, batch_size)test_iter = load_cifar10(False, test_augs, batch_size)loss = nn.CrossEntropyLoss(reduction="none")trainer = torch.optim.Adam(net.parameters(), lr=lr)train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)
train_with_data_aug(train_augs, test_augs, net)

        总之,图像增广作为一种数据处理技术,在深度学习领域具有重要的意义。通过应用图像增广,我们能够充分挖掘图像特征,提高模型的泛化能力。在实际项目中,我们可以根据需求选择不同的增广技术,从而优化模型的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/15598.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FreeRTOS ~(七)互斥量 ~ (2/3)互斥量解决优先级反转问题

前情提要 FreeRTOS ~(四)同步互斥与通信 ~ (2/3)互斥的缺陷 FreeRTOS ~(五)队列的常规使用 ~ (2/5)队列解决互斥缺陷 FreeRTOS ~(六)信号量 ~ (2/…

swiftUI和swift的区别

概述 SwiftUI是苹果公司推出的一种用于构建iOS、macOS、watchOS和tvOS应用程序界面的框架。它是基于Swift编程语言开发的,旨在简化UI开发过程并提供实时预览功能,使开发人员可以更快地构建出漂亮的应用程序界面。 Swift是苹果公司推出的一种面向对象的…

Openlayers实战:overlay上播放视频

在企业或者城市等的宣传上,视频能很好的传达出一些信息。 那么在openlayer中如何展示视频呢, 可以通过overlay的方式,点击某一个点,弹出overlay层,展示出视频,并自动播放。下面的实战就能够达到这种效果。 效果图 源代码 /* * @Author: 大剑师兰特(xiaozhuanlan),还…

OPPO手机便签怎么设置字体颜色?便签调整字体颜色方法

OPPO是一个非常受年轻人青睐的手机品牌,它的手机不仅外观设计时尚轻薄,而且拍照清晰、系统流畅,并且拥有高中低不同档次的价位可供消费者选择。虽然OPPO手机的使用体验非常不错,但是有一部分用户也遇到了一些问题,例如…

牛客小白月赛75 DE

D 矩阵 登录—专业IT笔试面试备考平台_牛客网 思路:我们能够发现每个点最多只用两种状态,一种是不变,另一种是改变,如果相邻的点与当前点不相同,则可以花费一个单位走过去,否则需要先改变它的状态&#x…

第2集丨JavaScript 中原型链(prototype chain)与继承

目录 一、一些基础概念1.1 ECMAScript 标准1.2 prototype和 __proto__1.3 constructor属性1.4 函数名 二、原型链的维护2.1 内部原型链和构造器原型链2.2 从实例回溯原型链2.3 修正原型指向 三、基于原型链的继承3.1 继承属性3.2 继承“方法” 四、构造函数4.1 案例一个简单的实…

Android加快你的编译速度

工欲善其事,必先利其器。如果每次运行项目都要花费5-10分钟,那人的心态都要崩了。 Gradle构建流程 Gradle 的生命周期可以分为大的三个部分:初始化阶段(Initialization Phase),配置阶段(Configuration Pha…

Linux性能优化实践——CPU上下文

CPU上下文切换 Linux是一个多任务操作系统,它支持远大于CPU数量的任务同时运行。这些任务不是真正意义上的并行运行,而是系统在短时间内,将CPU轮流分配给它们,造成任务同时运行的错觉。 CPU需要知道任务从哪里加载,从…

Elasticsearch【域的属性、分词器、Elasticsearch搜索文档】(三)-全面详解(学习总结---从入门到深化)

目录 Elasticsearch常用操作_域的属性 分词器_默认分词器 分词器_IK分词器 分词器_拼音分词器 分词器_自定义分词器 Elasticsearch搜索文档_准备工作 Elasticsearch搜索文档_搜索方式 Elasticsearch常用操作_域的属性 index 该域是否创建索引。只有值设置为true&#…

CCF-CSP真题《202303-4 星际网络II》思路+python,c++满分题解

想查看其他题的真题及题解的同学可以前往查看:CCF-CSP真题附题解大全 试题编号:202303-4试题名称:星际网络II时间限制:2.0s内存限制:1.0GB问题描述: 问题描述 随着星际网络的进一步建设和规模的增大&#x…

Android Studio实现内容丰富的安卓视频管理平台

如需源码可以添加q-------3290510686,也有演示视频演示具体功能,源码不免费,尊重创作,尊重劳动。 项目编号081 1.开发环境 android stuido 2.功能介绍 安卓端: 1.注册登录 2.本地视频 3.视频播放 4.收藏功能 5.网路视频…

016 - STM32学习笔记 - SPI读写FLASH(一)

016 - STM32学习笔记 - SPI访问Flash(一) 之前csdn的名称是宥小稚,后来改成放学校门口见了,所以前面内容看到图片水印不要在意,都是自己学习过程中整理的,不涉及版权啥的。 1、什么是SPI? SP…