2021-arxiv-GPT Understands, Too

2021-arxiv-GPT Understands, Too

Paper: https://arxiv.org/abs/2103.10385
Code: https://github.com/THUDM/P-tuning

Prompt 简单理解

举例来讲,今天如果有这样两句评论:

1. 什么苹果啊,都没有苹果味,怪怪的味道,而且一点都不甜,超级难吃!
2. 这破笔记本速度太慢了,卡的不要不要的。

现在我们需要根据他们描述的商品类型进行一个分类任务,

即,第一句需要被分类到「水果」类别中;第二句则需要分类到「电脑」类别中。

一种直觉的方式是将该问题建模成一个传统文本分类的任务,通过人工标注,为每一个类别设置一个id,例如:

{'电脑': 0,'水果': 1,....
}

这样一来,标注数据集就长这样:

什么苹果啊,都没有苹果味,怪怪的味道,而且一点都不甜,超级难吃!  1
这破笔记本速度太慢了,卡的不要不要的。    0
...

这种方法是可行的,但是需要「较多的标注数据」才能取得不错的效果。

由于大多数预训练模型(如BRET)在 pretrain 的时候都使用了 [MASK] token 做 MLM 任务,而我们在真实下游任务中往往是不会使用到 [MASK] 这个 token,这就意味着今天我们在训练下游任务时需要较多的数据集去抹平上下游任务不一致的 gap。

那,如果我们没有足够多的训练数据怎么办呢?

prompt learning 的出现就是为了解决这一问题,它将 [MASK] 的 token 引入到了下游任务中,将下游任务构造成和 MLM 类似的任务。

举例来讲,我们可以将上述评论改写为:

这是一条[MASK][MASK]评论:这破笔记本速度太慢了,卡的不要不要的。

然后让模型去预测两个 [MASK] token 的真实值是什么,那模型根据上下文能推测出被掩码住的词应该为「电脑」。

由于下游任务中也使用了和预训练任务中同样的 MLM 任务,这样我们就可以使用更少的训练数据来进行微调了。
但,这还不是 P-tuning。

通过上面的例子我们可以观察到,构建句子最关键的部分是在于 prompt的生成,即:

「这是一条[MASK][MASK]评论:」(prompt) + 这破笔记本速度太慢了,卡的不要不要的。(content)

被括号括起来的前缀(prompt)的生成是非常重要的,不同 prompt 会极大影响模型对 [MASK] 预测的正确率。

那么这个 prompt 怎么生成呢?

我们当然可以通过人工去设计很多不同类型的前缀 prompt,我们把他们称为 prompt pattern,例如:

这是一条[MASK][MASK]评论:
下面是一条描述[MASK][MASK]的评论:
[MASK][MASK]...

但是人工列这种 prompt pattern 非常的麻烦,不同的数据集所需要的 prompt pattern 也不同,可复用性很低。

那么,我们能不能通过机器自己去学习 prompt pattern 呢?

这,就是 P-Tuning。

P-Tuning 架构

给定一个预训练的语言模型 M M M,一个离散输入标记序列 x 1 : n = { x 0 , x 1 , … , x n } \mathbf{x}_{1: n}=\left\{x_0, x_1, \ldots, x_n\right\} x1:n={x0,x1,,xn}将由预训练嵌入层 e ∈ M \mathbf{e} \in \mathcal{M} eM映射到输入嵌入 { e ( x 0 ) , e ( x 1 ) , … , e ( x n ) } \left\{\mathbf{e}\left(x_0\right), \mathbf{e}\left(x_1\right), \ldots, \mathbf{e}\left(x_n\right)\right\} {e(x0),e(x1),,e(xn)}。在特定场景中,在上下文 x x x 的条件下,作者使用一组目标标记 y y y 的输出嵌入进行下游处理。例如,在预训练中, x x x 指的是未屏蔽的令牌,而 y y y 指的是 [MASK] 标记;在句子分类中, x x x 指的是句子标记,而 y y y 通常指的是 [CLS]。

提示 p p p 的功能是将上下文 x x x、目标 y y y 和自身组织到模板 T 中。例如,在预测一个国家首都的任务 (LAMA-TREx P36) 中,模板可能是“The capital of Britain is [MASK]”。(见图2),其中“The capital of … is … .“是提示,”Britain"是上下文,”[MASK]“是目标。提示可以非常灵活,我们甚至可以将它们插入到上下文或目标中。

V V V 指语言模型 M M M 的词汇表, [ P i ] [P_i] [Pi] 指模板 T 中的第 i i i 个提示标记。为简单起见,给定模板 T = { [ P 0 : i ] , x , [ P i + 1 : m ] , y } T=\left\{\left[\mathrm{P}_{0: i}\right], \mathbf{x},\left[\mathrm{P}_{i+1: m}\right], \mathbf{y}\right\} T={[P0:i],x,[Pi+1:m],y},与满足 [ P i ] ∈ V \left[\mathrm{P}_i\right] \in \mathcal{V} [Pi]V 并将 T T T 映射为的传统离散提示相比

相反,P-tuning 将 [Pi] 视为伪令牌,并将模板映射到

其中 h i ( 0 ≤ i < m ) h_i(0 \leq i<m) hi(0i<m) 是可训练的嵌入张量。能够找到超越 M M M V V V 可以表达的原始词汇的更好的连续提示。最后,利用下游损失函数 L L L,可以对连续提示 h i ( 0 ≤ i < m ) h_i(0 \leq i<m) hi(0i<m)进行差分优化

优化

1)离散性 M \mathcal{M} M的原始词嵌入 e e e在预训练后已经变得高度离散。如果用随机分布初始化 h h h,然后用随机梯度下降 (SGD) 进行优化,这已被证明只会改变小邻域中的参数,优化器很容易陷入局部最小值。
2)关联:另一个问题是,作者认为提示嵌入 h i h_i hi的值应该是相互依赖的,而不是独立的。需要一些机制来将提示嵌入相互关联。

鉴于这些挑战,在 P-tuning中,建议使用提示编码器将 h i h_i hi 建模为序列,该序列由一个非常精简的神经网络组成,可以解决离散性和关联问题。作者选择双向长短期记忆网络 (LSTM),并使用 ReLU 激活的两层多层感知器 (MLP) 来编码离散性。从形式上讲,将 h i ′ h_i^{\prime} hi嵌入到语言模型 M \mathcal{M} M中的实际输入源自
h i = MLP ⁡ ( [ h i → : h i ← ] ) = MLP ⁡ ( [ LSTM ⁡ ( h 0 : i ) : LSTM ⁡ ( h i : m ) ] ) \begin{aligned} h_i & =\operatorname{MLP}\left(\left[\overrightarrow{h_i}: \overleftarrow{h_i}\right]\right) \\ & =\operatorname{MLP}\left(\left[\operatorname{LSTM}\left(h_{0: i}\right): \operatorname{LSTM}\left(h_{i: m}\right)\right]\right) \end{aligned} hi=MLP([hi :hi ])=MLP([LSTM(h0:i):LSTM(hi:m)])

尽管 LSTM 头的使用确实为连续提示的训练增加了一些参数,但 LSTM 头比预训练模型小几个数量级。此外,在推理中,只需要输出嵌入 h h h,就可以丢弃 LSTM 头。

参考

https://zhuanlan.zhihu.com/p/583022692

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/156496.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

zabbix6.4监控centos

1、关闭防火墙 setenforce 0 #关闭SELinux sed -i "s/SELINUX=enforcing/SELINUX=disabled/g" /etc/selinux/config #设置永久关闭SELinux systemctl stop firewalld.service #关闭防火墙 systemctl disable firewalld.service …

python脚本-读取shadow关键信息并爆破密码

python脚本-读取shadow关键信息并爆破密码 代码 import crypt from colorama import Fore,Styledef crack():# 密码爆破函数定义with open(/root/top1000.txt) as f:# 此处更改密码字典for passwd in f:passwd2crypt.crypt(passwd.strip(),salt)if passwd2 passwd_hash:prin…

黄金矿工小游戏

欢迎来到程序小院 黄金矿工 玩法&#xff1a;点击开始游戏&#xff0c;黄金和钩子&#xff0c;钩子会左右摆动&#xff0c;对准黄金位置点击鼠标左键钓起黄金加对应时间&#xff0c;钓起黑色四块减去响应时间&#xff0c;快去挖矿吧^^。开始游戏https://www.ormcc.com/play/ga…

k8s-调度约束

目录 工作机制 调度过程 指定调度节点 Kubernetes 是通过 List-Watch 的机制进行每个组件的协作&#xff0c;保持数据同步的&#xff0c;每个组件之间的设计实现了解耦。 用户是通过 kubectl 根据配置文件&#xff0c;向 APIServer 发送命令&#xff0c;在 Node 节点上面…

PyGame:Python 游戏编程入门

一、说明 当我在上个世纪末开始学习计算机编程时&#xff0c;我的愿望是编写计算机游戏。我试图弄清楚如何在我学到的每种语言和每个平台上编写游戏&#xff0c;包括 Python。这就是我发现pygame并学习如何使用它来编写游戏和其他图形程序的方式。当时&#xff0c;我真的很想要…

2023世界传感器大会即将开启,汉威科技向全球发出邀请

由河南省政府、中国科学技术协会主办&#xff0c;郑州市人民政府、中国仪器仪表学会、河南省工业和信息化厅、河南省科学技术协会承办的“2023世界传感器大会”将于11月5日~7日在郑州国际会展中心举办。 传感器是链接数字世界与物理世界的桥梁&#xff0c;是万物互联、智慧化时…

[EFI]asus strix b760-i 13900F电脑 Hackintosh 黑苹果efi引导文件

硬件型号驱动情况主板 asus strix b760-i 处理器 I9 13900F 已驱动内存crucial ddr5-5200 64gb(32gb*2)(overclock 5600)已驱动硬盘 WD black sn850 500g*2 已驱动显卡rx570已驱动声卡Realtek ALCS1220A已驱动网卡Intel I225-V 2.5 Gigabit Ethernet已驱动无线网卡蓝牙Fevi T91…

密码学基础

密码学总览 信息安全面临的危险与应对这些威胁的密码技术&#xff1a; 关于上图中的威胁&#xff0c;这里在简单的说明&#xff1a; 窃听&#xff1a;指的是需要保密的消息被第三方获取。篡改&#xff1a;指的是消息的内容被第三方修改&#xff0c;达到欺骗的效果。伪装&…

Mysql数据库 6.SQL语言 分组、分页查询

分组查询—group by 分组——就是将数据表中的记录按照指定的类进行分组 关键字——group by 语法 语法中加[]的是可有可无的&#xff0c;group by一般和having一起使用 select 分组字段/聚合函数 from 表名 [where 条件] group by 分组列名 [having 条件] [order by …

关于CSS的几种字体悬浮的设置方法

关于CSS的几种字体悬浮的设置方法 1. 鼠标放上动态的2. 静态的&#xff08;位置看上悬浮&#xff09;2.1 参考QQ邮箱2.2 参考知乎 1. 鼠标放上动态的 效果如下&#xff1a; 代码如下&#xff1a; <!DOCTYPE html> <html lang"en"> <head><met…

【华为】路由器以PPPoE拨号接入广域网

组网需求 用户希望以PPPoE拨号方式接入广域网&#xff0c;如图1所示&#xff0c;Router作为PPPoE客户端&#xff0c;得到PPPoE服务器的认证后获得IP地址&#xff0c;实现用户接入互联网的需求。内网网关地址&#xff08;即VLANIF1接口的IP地址&#xff09;为10.137.32.1/24。 …

浅谈性能测试策略的理解

面对日益复杂的业务场景和不同的系统架构&#xff0c;前期的需求分析和准备工作&#xff0c;需要耗费很多的时间。而不同的测试策略&#xff0c;也对我们的测试结果是否符合预期目标至关重要。 这篇博客&#xff0c;聊聊我个人对常见的性能测试策略的理解&#xff0c;以及它们…