kubernetes-service微服务

目录

一、service微服务

 二、Ipvs模式

三、ClusterIP

1.ClusterIP

2.headless

四、NodePort

1.NodePort

2.默认端口

五、LoadBalancer

1.LoadBalancer

2.metallb

六、ExternalName


一、service微服务

       Kubernetes Service微服务是一种基于Kubernetes的微服务架构,它通过将服务拆分成多个小服务单元来实现高度可扩展性、弹性和可维护性。每个服务单元都有自己的容器、存储和网络,可以独立部署和升级。同时,Kubernetes Service微服务还可以使用Kubernetes内置的负载均衡器来自动化地分配请求和处理服务故障。总之,Kubernetes Service微服务是一种基于Kubernetes的先进的容器编排和管理技术,它可以提供高效、高可用和高可扩展的微服务体系结构。

 二、Ipvs模式

       Kubernetes Service的IPVS模式是一种高效的负载均衡方式,它使用Linux内核提供的IPVS(IP Virtual Server)技术来实现。

       在IPVS模式下,Kubernetes会在每个节点上创建一个独立的IPVS代理,并将所有服务的虚拟IP地址通过BGP协议广播到物理网络中。这些IP地址随后被路由到相应的节点,并由节点上的IPVS代理进行请求的转发。

       IPVS代理可以根据服务的负载均衡策略(如轮询、源IP哈希、最小连接数等)选择合适的后端Pod,并将请求转发到该Pod上。同时,IPVS代理还支持会话保持(Session Affinity)功能,确保来自同一客户端的请求都被转发到同一后端Pod上,以避免数据不一致等问题。

       IPVS模式的优势在于它的性能和可扩展性非常好,能够轻松处理大量的网络请求。同时,由于IPVS代理和物理网络之间的解耦,它也具有较好的灵活性和可靠性,能够适应各种不同的网络环境和服务需求。

修改proxy配置:

kubectl -n kube-system edit  cm kube-proxy

重启pod

kubectl -n kube-system get pod|grep kube-proxy | awk '{system("kubectl -n kube-system delete pod "$1"")}'

切换ipvs模式后,kube-proxy会在宿主机上添加一个虚拟网卡:kube-ipvs0,并分配service IP

三、ClusterIP

1.ClusterIP

       Kubernetes中的Service对象可以用来定义一组Pod的逻辑访问方式,其中ClusterIP是Service的默认类型。ClusterIP会为Pod提供一个虚拟IP地址,这个地址只在Kubernetes集群内部可用,其他外部网络无法访问该地址。

 创建测试示例:

vim myapp.ymlapiVersion: apps/v1
kind: Deployment
metadata:labels:app: myappname: myapp
spec:replicas: 6selector:matchLabels:app: myapptemplate:metadata:labels:app: myappspec:containers:- image: myapp:v1name: myapp---apiVersion: v1
kind: Service
metadata:labels:app: myappname: myapp
spec:ports:- port: 80protocol: TCPtargetPort: 80selector:app: myapptype: ClusterIP//ClusterIP是Kubernetes Service的一种类型。它为同一个Kubernetes集群中的其他Pod提供了访问Service的IP地址。这个IP地址和Service是虚拟的, 不对外暴露,只能在集群内部使用。

kubectl apply -f myapp.yml
kubectl get svc
dig -t A myapp.default.svc.cluster.local. @10.96.0.10

service创建后集群DNS提供解析

ClusterIP Service类型默认使用iptables调度。iptables负责将Service的ClusterIP地址映射到后端Pod的IP地址和端口上,处理请求的负载均衡和高可用性 

2.headless

       Kubernetes Service 的 headless 模式是指 Service 不会自动创建 ClusterIP 代理。在headless 模式下,当 Service 对应的 Pod 通过 DNS 查询时,将返回所有 Pod 的 IP 地址列表,而不是一个单独的 IP 地址。

headless Service 可以用于以下场景:

  • 有状态应用程序(StatefulSet):每个 Pod 都需要一个唯一的标识符,例如数据库的名称。
  • 多副本应用程序:需要将每个副本的 IP 地址列表返回给客户端来进行负载均衡。
  • 集群内部通信:例如,一个应用程序需要直接与另一个应用程序的 Pod 进行通信,而不是 Service 的负载均衡代理。

使用 headless Service 的方法是,在 Service 的 YAML 文件中将 clusterIP 设置为 None,例如:

vim myapp.ymlapiVersion: v1
kind: Service
metadata:labels:app: myappname: myapp
spec:ports:- port: 80protocol: TCPtargetPort: 80selector:app: myapptype: ClusterIPclusterIP: None

kubectl delete svc myapp
kubectl apply -f myapp.yml
kubectl get svc

headless模式不分配vip

headless通过svc名称访问,由集群内dns提供解析

dig -t A myapp.default.svc.cluster.local. @10.96.0.10

集群内直接使用service名称访问

kubectl run demo --image busyboxplus -it --rmnslookup myapp

四、NodePort

1.NodePort

       NodePort类型的Service会在每个Node上打开一个端口,用于将请求转发到Pod。

       nodePort是Service类型的一个字段,用于指定转发请求的端口范围。默认情况下,该值是随机分配的。

以下是创建一个NodePort类型的Service的yaml示例:

vim myapp.ymlapiVersion: v1
kind: Service
metadata:labels:app: myappname: myapp
spec:ports:- port: 80protocol: TCPtargetPort: 80selector:app: myapptype: NodePort

nodeport在集群节点上绑定端口,一个端口对应一个服务

2.默认端口

        NodePort 的默认端口是 30000 到 32767 之间的任意一个端口。可以通过 kubectl get svc 命令查看 NodePort 所绑定的端口。

vim myapp.ymlapiVersion: v1
kind: Service
metadata:labels:app: myappname: myapp
spec:ports:- port: 80protocol: TCPtargetPort: 80nodePort: 33333selector:app: myapptype: NodePort

nodeport默认端口是30000-32767,超出会报错:

添加如下参数,端口范围可以自定义

- --service-node-port-range=30000-50000

修改后api-server会自动重启,等apiserver正常启动后才能操作集群

五、LoadBalancer

1.LoadBalancer

        Kubernetes中的LoadBalancer是一种服务类型,它允许在云环境中创建外部可访问的负载均衡器。在使用LoadBalancer类型的服务时,Kubernetes集群会自动创建云供应商的负载均衡器,并将请求分发到后端Pod中。

        LoadBalancer服务类型需要云供应商支持,并且通过自动创建外部负载均衡器来实现。例如,使用AWS的Elastic Load Balancer或GCP的Load Balancer。配置一个LoadBalancer服务需要定义服务的端口和目标端口,以及要使用的负载均衡算法和策略。

        使用LoadBalancer服务类型,可以轻松地将Kubernetes中部署的应用程序暴露给外部网络,并在应用程序实例之间分配流量,以便提供高可用性和可扩展性。

vim myapp.ymlapiVersion: v1
kind: Service
metadata:labels:app: myappname: myapp
spec:ports:- port: 80protocol: TCPtargetPort: 80selector:app: myapptype: LoadBalancer

LoadBalancer模式适用云平台,裸金属环境需要安装metallb提供支持

2.metallb

        Metallb是一个用于处理Load Balancing的开源软件。在Kubernetes集群中,Service是一个抽象的概念,它为Pod提供了一个统一的入口,使得Pod可以被其他Pod或外部网络访问到。Metallb为Kubernetes Service提供了一个软件定义的Load Balancer,它可以自动分配IP地址,并将流量路由到正确的Pod。

        Metallb的核心组件是speaker和controller。controller负责监控Kubernetes Service和Pod的状态,并为每个Service分配一个IP地址。而speaker则会在每个节点上运行,将Service的IP地址配置到节点上的网络接口。

        使用Metallb,Kubernetes集群中的Service可以获得一个固定的IP地址,而无需依赖于云厂商的Load Balancer。这样可以提高集群的稳定性和可靠性,并且可以在任何环境下部署Kubernetes集群。

kubectl edit configmap -n kube-system kube-proxy
kubectl -n kube-system get pod|grep kube-proxy | awk '{system("kubectl -n kube-system delete pod "$1"")}'

strictARP: true //启用 Kubernetes Service 的 strictARP 选项可以防止 ARP 欺骗攻击,提高网络安全性

下载部署文件

wget https://raw.githubusercontent.com/metallb/metallb/v0.13.11/config/manifests/metallb-native.yaml

修改文件中镜像地址,与harbor仓库路径保持一致

上传harbor仓库:

部署服务

kubectl apply -f metallb-native.yaml
kubectl -n metallb-system get pod

配置分配地址段

vim config.yamlapiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:name: first-poolnamespace: metallb-system
spec:addresses:- 192.168.67.120-192.168.67.200  #修改为自己本地地址段---
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:name: examplenamespace: metallb-system
spec:ipAddressPools:- first-pool

通过分配地址从集群外访问服务

六、ExternalName

        Kubernetes Service 的 ExternalName 类型是一种非常简单的服务类型,它允许 Kubernetes 集群中的服务通过一个 DNS CNAME 来引用一个外部的服务。这个服务可以是集群外的任何服务,比如一个第三方的数据库或者缓存服务器等。

        使用 ExternalName 类型的服务,可以方便地将 Kubernetes 集群中的应用程序连接到集群外的服务,同时还可以使用 Kubernetes 的负载均衡和服务发现功能。这样就可以实现将多个服务整合到一个统一的 DNS 域名下管理的目的。

ExternalName 类型的服务定义非常简单,只需要指定服务名称和外部服务的 DNS 名称即可。例如:

vim externalname.yamlapiVersion: v1
kind: Service
metadata:name: my-service
spec:type:  ExternalNameexternalName: www.westos.org‘kubectl apply -f externalname.yaml
dig -t A my-service.default.svc.cluster.local. @10.96.0.10

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/157512.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python的web自动化学习(五)Selenium的隐式等待(元素定位)

引言: WebDriver隐式等待是一种全局性的等待方式,它会在查找元素时设置一个固定的等待时间。当使用隐式等待时,WebDriver会在查找元素时等待一段时间,如果在等待时间内找到了元素,则立即执行下一步操作;如果…

FMC子卡解决方案:FMC214-基于FMC兼容1.8V IO的Full Camera Link 输出子卡

FMC214-基于FMC兼容1.8V IO的Full Camera Link 输出子卡 一、板卡概述   基于FMC兼容1.8V IO的Full Camera Link 输出子卡支持Base、Middle、Full Camera link信号输出,兼容1.8V、2.5V、3.3V IO FPGA信号输出。适配xilinx不同型号开发板和公司内部各FMC载板。北…

浅述青犀AI算法人体攀爬行为检测的应用场景及解决方案

人体攀爬行为检测是指利用计算机视觉技术对人类攀爬物体的行为进行识别和分析。该技术主要依靠图像和视频数据进行分析,通过识别人类身体的各个部位,以及其在攀爬过程中的动作和姿态,实现对攀爬行为的检测和跟踪。该技术的场景应用比较广泛&a…

VR全景在医院的应用:缓和医患矛盾、提升医院形象

医患关系一直以来都是较为激烈的,包括制度的不完善、医疗资源紧张等问题也时有存在,为了缓解医患矛盾,不仅要提升患者以及家属对于医院的认知,还需要完善医疗制度,提高医疗资源的配置效率,提高服务质量。 因…

有方N58 HTTP POST 请求连接 TDengine

串口调试软件:格西调试精灵 第一步先注册网络获取IP地址 建立PPP连接 ATXIIC1\r PPP链路建立成功,查询IP地址 ATXIIC?\r 设置网络APN ATCREG?\r 运行结果,红线处是获…

SpringCloud篇---第三篇

系列文章目录 文章目录 系列文章目录一、负载平衡的意义什么?二、什么是Hystrix?它如何实现容错?三、什么是Hystrix断路器?我们需要它吗?一、负载平衡的意义什么? 在计算中,负载平衡可以改善跨计算机,计算机集群,网络链接,中央处理单元或磁盘驱动器等多 种计算资源的…

Python Django 之模板继承详解(extends)

文章目录 1 概述1.1 目的1.2 标签:block、extends1.3 目录结构 2 templates 目录2.1 base.html:父页面2.2 login.html:子页面 3 其它代码3.1 settings.py3.2 views.py3.3 urls.py 1 概述 1.1 目的 模板继承 和 类继承 的目的是一样的&#…

74X138元件怎么找——错误解决方法

1.在做74X138的时候根据课本,无法在现有的库中找到74X138,搜索了老师发的库中,都是集成库打不开,那我该怎么办? 根据这个课本P343,(即机械工业出版社,刘超,包建荣,俞优姝…

Springboot项目Eureka安全加密

一、通过security增加账号密码登录 1、registry服务pom增加security依赖 2、registry 配置文件 指定security账号密码 3、http://账号:密码IP:PORT/eureka/ 4、重启 二、关闭节点 三、防火墙移除eureka端口访问 参考:Linux(Centos7)操作记录

WiFi模块的环境可持续性:可再生能源、材料创新与碳足迹管理

随着数字化时代的到来,WiFi模块已经成为我们日常生活和工作中不可或缺的一部分。然而,这种便利也伴随着对环境的一定影响。本文将深入研究WiFi模块在环境可持续性方面的挑战和机遇,重点关注可再生能源的应用、材料创新以及碳足迹管理。 1. 可…

06_es分布式搜索引擎2

一、DSL查询文档 1.DSL查询分类 ①查询所有:match_all ②全文检索:利用分词器对用户输入的内容分词,倒排索引去匹配 match_query multi_match_query ③精确查询:根据精确词条查找数据,查找的是keyword,数值,日期,b…

浅谈开口互感器在越南美的工业云系统中的应用

摘 要:分析低压开口式电流互感器的原理,结合工程实例分析开口电流互感器在低压配电系统中,主要是改造项目中的应用及施工细节,为用户快速实现智能配电提供解决方案,该方案具有成本低、投资少、安装接线简便等优点&…