OpenCV 笔记(4):图像的算术运算、逻辑运算

Part11.  图像的算术运算

图像的本质是一个矩阵,所以可以对它进行一些常见的算术运算,例如加、减、乘、除、平方根、对数、绝对值等等。除此之外,还可以对图像进行逻辑运算和几何变换。

我们先从简单的图像加、减、逻辑运算开始介绍。后续会有专门的内容介绍图像的几何变换等。

11.1 图像加法

图像的加法是将两个大小、类型相同的图像按照逐个像素进行相加,最后得到一个新的图像。

图像的加、减、乘、除运算,都是两个大小、类型相同的图像进行运算。

1.1.1 加法的例子

图像相加的公式:

也可以使用:dst += src1,其中 += 是 C++ 可重载的运算符。

举个简单的例子:

Mat a = imread(".../cat.jpg");// 加载了一张猫的图片
imshow("a", a);Mat b = Mat(Size(a.cols,a.rows),a.type(), Scalar(0,0,255));// 生成跟a大小类型一样,红色的图像Mat c;
cv::add(a,b,c);// 将 a、b 相加,结果为c
imshow("c", c);
e652cd2c39032b9a33d8980d6cbfc7f3.jpeg
add.png

上述代码中 Mat 对象 c 是 Mat 对象 a、b 相加得到的产物。如果将 b 改成白色也就是 Scalar(255,255,255)。那么 c 会变成什么呢?答案依然是白色。因为加法是像素相加,如果两个像素点超出255,那么依旧会变成255。

1.1.2 实现 add() 函数的功能

为了解释上面的问题,我们尝试自己实现一个 add 函数的功能。

Mat a = imread(".../cat.jpg"); // 加载 cat 的图像
imshow("a", a);Mat b = Mat(Size(a.cols,a.rows),a.type(), Scalar(0,0,255));int h = a.rows; // 图像 a 的高
int w = a.cols; // 图像 a 的宽Mat c = Mat::zeros(a.size(), a.type());
for (int row = 0; row < h; row++)
{for (int col = 0; col < w; col++){Vec3b p1 = a.at<Vec3b>(row, col);Vec3b p2 = b.at<Vec3b>(row, col);c.at<Vec3b>(row, col)[0] = saturate_cast<uchar>(p1[0] + p2[0]);c.at<Vec3b>(row, col)[1] = saturate_cast<uchar>(p1[1] + p2[1]);c.at<Vec3b>(row, col)[2] = saturate_cast<uchar>(p1[2] + p2[2]);}
}imshow("c", c);

通过2层for循环遍历 a、b 图像的每个像素点,并将结果相加赋值给 c 图像对应的像素点。在相加的时候,使用了 saturate_cast() 函数。

saturate_cast() 是一个模版函数,它的作用是防止溢出。它支持 uchar、short、int、float、double 等各种类型。

对于 uchar 类型,如果像素值超过255,使用 saturate_cast() 函数后它的值变为255。这也正好解释了,如果 b 是白色,那么最终得到的 c 对象也会是白色。

1.1.3 使用 copyTo() 函数实现的图像叠加

前面的文章我们曾介绍过 copyTo() 函数,它可以将 Mat 对象拷贝到另一个 Mat 对象上。

现在再来回顾一下它的使用

Mat a = imread(".../cat.jpg"); // 加载 cat 的图像Mat b = imread(".../leaf.png"); // 加载一张小尺寸的树叶的图像Mat roi = a(Rect(0,0,b.cols,b.rows));b.copyTo(roi);imshow("result", a);

在上述代码中, roi 对象是从 a 对象中截取一块区域,并且该区域跟 b 对象大小一样。由于提取 roi 的操作是浅拷贝,将 b 对象复制到 roi 对象之后,就会改变 a 对象本身。

下面是执行的结果:

2c569c933cc58502bd1382c73856cddc.jpeg
copyTo.png

因此,可以借助 copyTo() 函数来实现图像的叠加。

21.2 图像的线性混合(linear blending)

图像的线性混合公式:$$dst = src1alpha + src2beta + gamma$$

其中,alpha、beta 分别表示图像1和图像2的权重,gamma 是亮度调节量。当 alpha = beta = 1 且 gamma = 0 时,表示两个图像的相加。

进行线性混合的两个图像,也必须大小和类型一致。

Mat a = imread(".../cat.jpg"); // 加载 cat 的图像Mat b = imread(".../chinese_flag.png"); // 加载五星红旗的图像resize(a, a,Size(b.cols,b.rows));// 缩放a的大小,跟b保持一致Mat dst;
addWeighted(a, 0.5, b, 0.5,0, dst);imshow("dst", dst);

由于图像 a、b 大小不一样,因此在线性混合之前需要用 resize() 函数将图像 a 的大小按照图像 b 的大小进行缩放。

02db30447a3998ea6c3028b4dd52adcd.jpeg
linear_lending.png

上面的代码,将猫和五星红旗完成了线性混合。如果还想尝试做一个国庆版本的渐变头像,则需要离红旗越近,红旗的权重越大。

我们可以这样写代码:

Mat a = imread(".../cat.jpg"); // 加载 cat 的图像Mat flag = imread(".../chinese_flag.png");
int flag_width = flag.cols;
int flag_height = flag.rows;Mat dst;resize(a, dst, Size(flag_width, flag_height));int radius = 0;
if (flag_width > flag_height) {radius = flag_width;
} else {radius = flag_height;
}for (int i=0; i < dst.rows; i++) {for (int j=0; j < dst.cols; j++) {int distance = std::sqrt(i*i+j*j);double alpha;if (distance > radius) {alpha =  1;}  else {alpha = (double) distance / radius;}double beta = 1 - alpha;Vec3b v1 = dst.at<Vec3b>(i, j);dst.at<Vec3b>(i, j)[0]= alpha * v1[0] + beta * flag.at<Vec3b>(i, j)[0];dst.at<Vec3b>(i, j)[1]= alpha * v1[1] + beta * flag.at<Vec3b>(i, j)[1];dst.at<Vec3b>(i, j)[2]= alpha * v1[2] + beta * flag.at<Vec3b>(i, j)[2];}
}imshow("dst", dst);
b5c58c05ccebdee7f367b9164b981ae0.jpeg
avatar.png

31.3 图像减法

图像相减是两个图像按照逐个像素进行相减,图像相减可以检测出两个图像的差异。利用这个差异可以做各种检测,因此图像减法在很多领域都有实际的用途。

图像相减的公式:

也可以使用:dst -= src1,其中 -= 是 C++ 可重载的运算符。

举个简单的例子:

Mat a = imread(".../cat.jpg"); // 加载 cat 的图像int width = a.cols;
int height = a.rows;Mat b = Mat(Size(width,height), a.type(),Scalar(0,0,0));
circle(b, Point(width/2, height/2), 600, Scalar(255,255,255), -1);Mat dst;
subtract(a,b,dst);imshow("dst", dst);
ab81bd140cefb86fb98759a9a6c67dae.jpeg
subtract.png

上述执行的结果是图像 a 减去图像 b 之后得到的结果,将中间的猫“抠掉”了。如果只想要中间的猫,而不要背景该怎么做呢?本文后续会用 bitwise_and 运算来获取。

再举个例子,对加载图像进行高斯模糊,然后用原图减去高斯模糊后的图,会得到两张图像的差异。

Mat a = imread(".../cat.jpg"); // 加载 cat 的图像
imshow("a",a);Mat b;
GaussianBlur(a, b,Size(15,15),0,0);
imshow("b",b);Mat dst;
subtract(a,b,dst);
imshow("dst",dst);
15eab01ffd75bb6cb5a6b10e2c8c89db.jpeg
diff.png

图像的减法介绍完之后,图像的乘法(multiply)、除法(divide)、差的绝对值(absdiff)的用法都很类似,在实际工作中也经常会用到。特别是 absdiff() 函数,用公式表示:

可以用它获取 差分图,经常应用在视频分析中。

Part22. 图像的逻辑运算

42.1 掩模的基础知识

在介绍图像的逻辑运算之前,再来回顾一下掩模(mask)的知识,因为 OpenCV 很多的函数中都会用到 mask 这个参数。

图像的算术运算、逻辑运算都支持 mask。

掩模是小于或等于源图像的单通道矩阵,掩模中的值分为 0 和非 0。

图像掩模是用选定的图像、图形或物体,对处理的图像(全部或局部)进行遮挡,来控制图像处理的区域或处理过程。

掩模的作用:

  • 提取 ROI

  • 屏蔽作用

  • 提取结果特征

  • 制作特殊形状的图像

掩模的生成方式有很多种。

我们可以自己创建一个,将图像减法的第一个例子图像 b 稍微改一下即可。因为 mask 是单通道的矩阵。

Mat mask = Mat(Size(width,height), CV_8UC1,Scalar(0,0,0));
circle(mask, Point(width/2, height/2), 600, Scalar(255,255,255), -1);

我们也可以通过图像二值化阈值分割来提取 mask,例如:

Mat src = imread(".../leaf.png"); // 加载一张小尺寸的树叶的图像
imshow("src",src);Mat gray;
cvtColor(src,gray,COLOR_BGR2GRAY);Mat mask;
threshold(gray, mask, 0, 255, THRESH_BINARY_INV|THRESH_OTSU);imshow("mask",mask);
f8b06902fdb95bc438ddf363532a8033.jpeg
mask.png

图像二值化的相关内容后续文章会专门介绍。总之,mask 的制作有很多方式。

52.2 逻辑运算

两个图像可以进行与、或、异或等逻辑运算。下面是逻辑操作的真值表:

aba AND ba OR ba XOR bNOT a
000001
010111
100110
111100

其中,

  • 与运算的原理:如果 a、b 两个值有0,则与的结果为0;如果 a、b 全为1,则与的结果为1。

  • 或运算的原理:如果 a、b 两个值有1,则或的结果为1;如果 a、b 全为0,则与或的结果为0。

  • 异或运算的原理:如果 a、b 两个值不相同,则异或结果为1;如果 a、b 两个值相同,则异或结果为0。

  • 非运算的原理:如果 a 的值为1,则非运算的结果为0;如果 a 的值为0,则非运算的结果为1。

图像的逻辑运算也需要两个大小、类型相同的图像才能进行运算。

Mat a = imread(".../cat.jpg"); // 加载 cat 的图像Mat b = Mat(Size(a.cols,a.rows),a.type(), Scalar(0,0,255));// 生成跟a大小类型一样,红色的图像Mat dst1,dst2,dst3,dst4;
bitwise_and(a,b,dst1);
bitwise_or(a,b,dst2);
bitwise_xor(a,b,dst3);
bitwise_not(a,dst4);imshow("bitwise_and", dst1);
imshow("bitwise_or", dst2);
imshow("bitwise_xor", dst3);
imshow("bitwise_not", dst4);
92cff44b254575d5858af9a7b2dc1069.jpeg
bitwise_op.png

OpenCV 中的逻辑与、或、异或、非运算对应的函数分别是 bitwise_and、bitwise_or、bitwise_xor、bitwise_not。上图也分别展示了这些函数的执行结果。

现在我们来回答一下前面的问题,如何只“抠掉”中间的猫?答案是只要使用 bitwise_and 函数即可。

Mat a = imread(".../cat.jpg"); // 加载 cat 的图像int width = a.cols;
int height = a.rows;Mat b = Mat(Size(width,height), a.type(),Scalar(0,0,0));
circle(b, Point(width/2, height/2), 600, Scalar(255,255,255), -1);Mat dst;
bitwise_and(a,b,dst);
imshow("dst", dst);
cfbcdfe246fa305478844a28507a2989.jpeg
bitwise_and.png

62.3 利用 mask 进行图像融合

对刚才的代码稍微改动一下,把图像 b 的类型改成 CV_8UC1 之后,并改名成 mask。bitwise_and 函数的使用也稍作调整。当 mask 参与 bitwise_and 运算的时候,执行的结果跟刚才是一致的。

Mat a = imread(".../cat.jpg"); // 加载 cat 的图像int width = a.cols;
int height = a.rows;Mat mask = Mat(Size(width,height), CV_8UC1,Scalar(0,0,0));
circle(mask, Point(width/2, height/2), 600, Scalar(255,255,255), -1);Mat dst;
bitwise_and(a,a, dst,mask);
imshow("dst", dst);

因为,当 bitwise_and 函数使用 mask 参数时,该运算只会在掩模值非空的像素点执行。所以可以用来去除背景提取 ROI。

利用 mask 进行“逻辑与”运算,即掩膜图像白色区域是对需要处理图像像素的保留,黑色区域则是对需要处理图像像素的剔除,其余逻辑操作原理类似只是效果不同而已。

之前使用 copyTo() 函数实现的图像叠加生成的图片,效果并不理想,因为树叶不是透明的。

下面,尝试一下将两张图像完美的融合。

Mat a = imread(".../cat.jpg"); // 加载 cat 的图像Mat b = imread(".../leaf.png"); // 加载一张小尺寸的树叶的图像Mat b2gray;
cvtColor(b,b2gray,COLOR_BGR2GRAY); // 对 b 转换成灰度图像
imshow("b2gray", b2gray);Mat mask,mask_inv;
threshold(b2gray, mask, 0, 255, THRESH_BINARY_INV|THRESH_OTSU);// 二值分割获取 mask
imshow("mask", mask);bitwise_not(mask,mask_inv);
imshow("mask_inv", mask_inv);Mat roi = a(Rect(0,0,b.cols,b.rows));
Mat fg,bg;
bitwise_and(roi,roi,bg, mask_inv);
imshow("bg", bg); // 提取 roi 的背景
bitwise_and(b,b,fg,mask);
imshow("fg", fg); // 提取 b 的前景Mat dst;
add(bg,fg,dst);
dst.copyTo(roi);imshow("result", a);

首先加载两张图像,分别为 a、b 对象。

将 b 对象转换成灰度图像,然后通过二值分割获取 mask,以及对 mask 进行非运算获得 mask_inv。

对 a 对象进行截取 roi 的操作,roi 的大小跟 b 对象一致。

然后分别用 与运算 提取 roi 的背景和 b 对象的前景。将两者相加,并将结果拷贝到 roi 对象上。最后,我们可以看到两张图像完美融合的结果。

下面的几张图分别展示了代码中各个阶段生成的对象,以及最后的结果。

e71b5480bcd394a135c84945cd0ae50f.jpeg
step1.png
4fa4e3ed656152439725791737731ace.jpeg
step2.png
3ee7cc086c684619ad80dbefbb72d40f.jpeg
result.png

Part33. 总结

本文分成两个部分。第一部分介绍了图像的算术运算,主要是介绍了图像加法、减法以及它们的实现原理和使用场景,还介绍了图像的线性混合。

第二部分介绍了图像的逻辑运算,回顾了 mask 的用途,以及如何在 bitwise_and 函数中使用 mask。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/157557.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Objective-C和ASIHTTPRequest库进行Douban电影分析

概述 Douban是一个提供图书、音乐、电影等文化内容的社交网站&#xff0c;它的电影频道包含了大量的电影信息和用户评价。本文将介绍如何使用Objective-C语言和ASIHTTPRequest库进行Douban电影分析&#xff0c;包括如何获取电影数据、如何解析JSON格式的数据、如何使用代理IP技…

轻松搭建Nextcloud私有云盘并实现远程访问【内网穿透】

文章目录 摘要1. 环境搭建2. 测试局域网访问3. 内网穿透3.1 ubuntu本地安装cpolar3.2 创建隧道3.3 测试公网访问 4 配置固定http公网地址4.1 保留一个二级子域名4.1 配置固定二级子域名4.3 测试访问公网固定二级子域名 摘要 Nextcloud,它是ownCloud的一个分支,是一个文件共享服…

搜维尔科技:scalefit生物力学人体工学软件分析!

人体工程学分析 21加载参数和头像显示 识别(隐藏的)健康风险 根据DGUV交通灯进行生物反馈(DIN/ISO) 实时应力分析 三维空间可视化 静态/动态肩载 用左/右赋值加载输入 腰椎间盘压缩计算 距离和定时器显示 带有运动跟踪的化身/视频叠加 外骨骼与CAD工作站仿真 CSV原始…

不只保护隐私的防窥膜,还是屏幕的小铠甲

电脑防窥膜这种东西确实很实用&#xff0c;尤其是那些经常在公共场所用笔记本的朋友&#xff0c;更是需要这张贴膜的保护&#xff0c;不过虽然现在市面上这种防窥膜种类繁多&#xff0c;但是产品质量良莠不齐。有些防窥膜虽然有防窥效果&#xff0c;但透光率下降太多了&#xf…

在Qt中List View和List Widget的区别是什么,以及如何使用它们

2023年10月29日&#xff0c;周日晚上 目录 List View和List Widget的区别 如何使用QListView 如何使用QListWidget List View和List Widget的区别 在Qt中&#xff0c;QListView 和 QListWidget 是用于显示列表数据的两个常用控件&#xff0c;它们有一些区别和特点。 1. 数…

免费(daoban)gpt,同时去除广告

一. 内容简介 免费(daoban)gpt&#xff0c;同时去除广告&#xff0c;https://chat18.aichatos.xyz/&#xff0c;也可当gpt用&#xff0c;就是有点广告&#xff0c;大家也可以支持一下 二. 软件环境 2.1 Tampermonkey 三.主要流程 3.1 创建javascript脚本 点击添加新脚本 …

opengl基础笔记1

1、opengl运行模式及opengl规范 运行模式&#xff1a;核心模式与立即渲染模式&#xff08;弃用&#xff09; 由于OpenGL的大多数实现都是由显卡厂商编写的&#xff0c;当产生一个bug时通常可以通过升级显卡驱动来解决。这些驱动会包括你的显卡能支持的最新版本的OpenGL&#xf…

开放式耳机百元机哪个好、平价又好用的开放式耳机

开放式耳机最近一两年越来越受欢迎&#xff0c;市场上不同形态的非入耳式耳机都有&#xff0c;从骨传导&#xff0c;夹耳式到气传导等等都有。开放式耳机的好处有很多&#xff0c;非入耳式&#xff0c;不伤耳朵&#xff0c;佩戴更舒适更安全。今天就来和大家聊聊开放式耳机百元…

智能井盖传感器推荐,万宾科技助力城市信息化建设

随着科技产品更新换代进程加快&#xff0c;人工智能在人们日常生活之中逐渐普及开来&#xff0c;深入人们生活的方方面面&#xff0c;影响城市基础设施建设工程。例如在大街小巷之中的井盖作为城市基础建设的一个重要部分&#xff0c;一旦出现松动倾斜或凸起等异常问题&#xf…

chap认证带客户端IP分配案例

PPP协议两边的网段可以不在同一个网段&#xff0c;因为数据链路帧用0xff表示帧&#xff0c;不用arp&#xff0c;所以可以不同网段。 R1&#xff1a; aaa local-user test password cipher admin local-user test service-type ppp interface Serial4/0/0 link-protocol ppp pp…

厦门万宾科技智能井盖监测仪器的作用如何?

越来越多的人们希望改善生活&#xff0c;走出农村走出大山&#xff0c;前往城市之中居住。由此城市的人口和车辆在不断增加&#xff0c;与之而来的是城市的交通压力越来越大&#xff0c;时常会出现道路安全隐患&#xff0c;这给城市未来发展和智慧城市建设都带来一定的难题&…

基于人工势场法的航线规划

GitHub - zzuwz/Artificial-Potential-Field: 2D平面下的人工势场法 GitHub - mellody11/Artificial-Potential-Field: 机器人导航--人工势场法及其改进 matlab2020a可以运行