【深度学习】pytorch——实现CIFAR-10数据集的分类

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~

往期文章:
【深度学习】pytorch——快速入门

CIFAR-10分类

  • CIFAR-10简介
  • CIFAR-10数据集分类实现步骤
  • 一、数据加载及预处理
    • 实现数据加载及预处理
    • 归一化的理解
    • 访问数据集
      • Dataset对象
      • Dataloader对象
  • 二、定义网络
  • 三、定义损失函数和优化器(loss和optimizer)
  • 四、训练网络并更新网络参数
    • enumerate函数
  • 五、测试网络
    • 部分数据集(实际的label)
    • 部分数据集(预测的label)
    • 整个测试集

CIFAR-10简介

CIFAR-10是一个常用的图像分类数据集,每张图片都是 3×32×32,3通道彩色图片,分辨率为 32×32。

它包含了10个不同类别,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。这10个类别分别为:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。

CIFAR-10分类任务是将这些图像正确地分类到它们所属的类别中。对于这个任务,可以使用深度学习模型,如卷积神经网络(CNN)来实现高效的分类。

CIFAR-10分类任务是一个比较典型的图像分类问题,在计算机视觉领域中被广泛使用,是检验深度学习模型表现的一个重要基准。

CIFAR-10数据集分类实现步骤

  1. 使用torchvision加载并预处理CIFAR-10数据集
  2. 定义网络
  3. 定义损失函数和优化器
  4. 训练网络并更新网络参数
  5. 测试网络

一、数据加载及预处理

实现数据加载及预处理

import torch as t
import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化# 第一次运行程序torchvision会自动下载CIFAR-10数据集,大约100M。
# 如果已经下载有CIFAR-10,可通过root参数指定# 定义对数据的预处理
transform = transforms.Compose([transforms.ToTensor(), # 转为Tensortransforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化])# 训练集
trainset = tv.datasets.CIFAR10(		# PyTorch提供的CIFAR-10数据集的类,用于加载CIFAR-10数据集。root='D:/深度学习基础/pytorch/data/', 	# 设置数据集存储的根目录。train=True, 	# 指定加载的是CIFAR-10的训练集。download=True,	# 如果数据集尚未下载,设置为True会自动下载CIFAR-10数据集。transform=transform)	# 设置数据集的预处理方式。# 数据加载器
trainloader = t.utils.data.DataLoader(trainset, 		# 指定了要加载的训练集数据,即CIFAR-10数据集。batch_size=4,	# 每个小批量(batch)的大小是4,即每次会加载4张图片进行训练。shuffle=True, 	# 在每个epoch训练开始前,会打乱训练集中数据的顺序,以增加训练效果。num_workers=2)	# 使用2个进程来加载数据,以提高数据的加载速度。# 测试集
testset = tv.datasets.CIFAR10('D:/深度学习基础/pytorch/data/',train=False, download=True, transform=transform)testloader = t.utils.data.DataLoader(testset,batch_size=4, shuffle=False,num_workers=2)classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')

这段代码主要是使用PyTorch和torchvision库来加载并处理CIFAR-10数据集,其中包括训练集和测试集。

  1. import torch as timport torchvision as tv 导入了PyTorch和torchvision库。
  2. import torchvision.transforms as transforms 导入了torchvision.transforms模块,用于进行数据转换和增强操作。
  3. from torchvision.transforms import ToPILImage 导入了ToPILImage类,它可以将Tensor对象转换为PIL Image对象,以方便后续的可视化操作。
  4. show = ToPILImage() 创建一个ToPILImage对象,用于将张量(Tensor)对象转换为PIL Image对象,以便于后续的可视化操作。
  5. transform = transforms.Compose([...]) 定义对数据的预处理操作,将多个预处理操作组合在一起,形成一个数据预处理的管道。该管道首先使用transforms.ToTensor()函数将图像转换为张量(Tensor)对象,然后使用transforms.Normalize()函数对图像进行归一化操作,以便于后续的训练。
  6. trainset = tv.datasets.CIFAR10([...]) 使用tv.datasets.CIFAR10()函数加载CIFAR-10数据集,并指定数据集的存储位置、是否为训练集、是否需要下载等参数。还可以通过transform参数来指定对数据进行的预处理操作。
  7. trainloader = t.utils.data.DataLoader([...]) 使用PyTorch的DataLoader类来创建一个数据加载器,该加载器可以按照指定的批量大小将数据集分成小批量进行加载。可以指定加载器的参数,如批量大小、是否随机洗牌、使用的进程数等。
  8. testset = tv.datasets.CIFAR10([...])testloader = t.utils.data.DataLoader([...]) 与训练集的加载方式类似,只是将参数中的train改为False,表示这是测试集。
  9. classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') 定义了CIFAR-10数据集中包含的10个类别。

注:tv.datasets.CIFAR10()函数会自动下载CIFAR-10数据集并存储到指定位置,如果已经下载过该数据集,可以通过root参数来指定数据集的存储位置,避免重复下载浪费时间和带宽。

归一化的理解

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化

transforms.Normalize()函数实现了对图像数据进行归一化操作。该函数的参数是均值和标准差,在CIFAR-10数据集中,每个像素有3个通道(R,G,B),因此传入的均值和标准差是一个长度为3的元组。这里(0.5, 0.5, 0.5)表示每个通道的均值为0.5,(0.5, 0.5, 0.5)表示每个通道的标准差也为0.5。具体地,对于每个像素的每个通道,该函数执行以下计算:

input[channel] = (input[channel] - mean[channel]) / std[channel]

其中,input[channel]表示一个像素的某个通道的像素值,mean[channel]std[channel]分别表示该通道的均值和标准差。通过这样的归一化操作,每个通道的像素值都将落在-1到1之间,从而便于模型的训练。

因此,这行代码的作用是对CIFAR-10数据集中的图像进行归一化,将每个通道的像素值映射到-1到1之间。

访问数据集

Dataset对象

Dataset对象是一个数据集,可以按下标访问,返回形如(data, label)的数据。

(data, label) = trainset[100]	# 从训练集中获取第100个样本的数据(图像)和标签。
print(classes[label])	# (data + 1) / 2是为了还原被归一化的数据,将之前归一化的数据重新映射到0到1的范围内。
show((data + 1) / 2).resize((200, 200))

输出为:

ship
在这里插入图片描述

Dataloader对象

Dataloader是一个可迭代的对象,它将dataset返回的每一条数据拼接成一个batch,并提供多线程加速优化和数据打乱等操作。当程序对dataset的所有数据遍历完一遍之后,相应的对Dataloader也完成了一次迭代

dataiter = iter(trainloader)
images, labels = next(dataiter) # 返回4张图片及标签
print(','.join('%11s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid((images+1)/2)).resize((400,100))
  • 使用iter(trainloader)将训练数据加载器转换成一个迭代器对象dataiter

  • 使用next(dataiter)从迭代器中获取下一个批次的数据。这里假设每个批次的大小为4,所以imageslabels分别是一个包含4张图片和对应标签的张量。

  • 通过一个循环遍历了这4张图片的标签,并使用classes[labels[j]]将每个标签转换为对应的类别名称。classes是一个包含CIFAR-10数据集各个类别名称的列表。

  • 使用tv.utils.make_grid()函数将这4张图片拼接成一张网格图,并通过(images+1)/2将像素值从[-1, 1]的范围映射到[0, 1]的范围。使用show()函数显示图像,并调用resize()对图像进行调整大小,再使用print()输出调整大小后的图像。

输出为:
cat, truck, plane, deer
在这里插入图片描述

二、定义网络

LeNet网络,self.conv1第一个参数为3通道,因为CIFAR-10是3通道彩图

import torch.nn as nn
import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5)  self.fc1   = nn.Linear(16*5*5, 120)  self.fc2   = nn.Linear(120, 84)self.fc3   = nn.Linear(84, 10)def forward(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(x.size()[0], -1) 	# -1表示会自适应的调整剩余的维度x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)        return xnet = Net()
print(net)

输出为:

Net((conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))(fc1): Linear(in_features=400, out_features=120, bias=True)(fc2): Linear(in_features=120, out_features=84, bias=True)(fc3): Linear(in_features=84, out_features=10, bias=True)
)

模型包含以下层:

  1. self.conv1: 输入通道数为3,输出通道数为6,卷积核大小为5x5的卷积层。
  2. self.conv2: 输入通道数为6,输出通道数为16,卷积核大小为5x5的卷积层。
  3. self.fc1: 输入大小为16x5x5,输出大小为120的全连接层。
  4. self.fc2: 输入大小为120,输出大小为84的全连接层。
  5. self.fc3: 输入大小为84,输出大小为10的全连接层。

模型的前向传播函数(forward):

  1. 先经过第一个卷积层,然后应用ReLU激活函数和2x2的最大池化操作。
  2. 再经过第二个卷积层,同样应用ReLU激活函数和2x2的最大池化操作。
  3. 通过x.view(x.size()[0], -1)将特征张量x展平为一维向量,以便输入全连接层。
  4. 依次经过两个全连接层,并使用ReLU激活函数进行非线性变换。
  5. 最后一层是一个全连接层,输出大小为10,对应CIFAR-10数据集的10个类别。这里没有使用激活函数,因为该模型将其输出直接作为分类的得分。

总体而言,该模型由两个卷积层和三个全连接层组成,用于对CIFAR-10数据集进行图像分类。

三、定义损失函数和优化器(loss和optimizer)

from torch import optim
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
  • nn.CrossEntropyLoss()创建了一个交叉熵损失函数的实例,用于计算分类任务中的损失。交叉熵损失函数通常用于多类别分类问题,它将模型的输出与真实标签进行比较,并计算出一个数值作为损失值,用来衡量模型预测与真实标签之间的差异。

  • optim.SGD(net.parameters(), lr=0.001, momentum=0.9)创建了一个随机梯度下降(SGD)优化器的实例。

    net.parameters()表示要优化的模型参数,即神经网络中的权重和偏置。

    lr=0.001是学习率(learning rate),控制每次参数更新的步长大小。

    momentum=0.9表示动量(momentum)参数,用于加速优化过程并避免陷入局部最优解。

四、训练网络并更新网络参数

t.set_num_threads(8)	# 设置线程数为 8,以加速训练过程。
for epoch in range(2):  	# 指定训练的轮数为 2 轮(epoch),即遍历整个数据集两次。running_loss = 0.0		# 记录当前训练阶段的损失值for i, data in enumerate(trainloader, 0):# 输入数据inputs, labels = data# 梯度清零optimizer.zero_grad()		# 每个 batch 开始时,将优化器的梯度缓存清零,以避免梯度累积# forward + backward outputs = net(inputs)loss = criterion(outputs, labels)	# 进行前向传播,然后计算损失函数 lossloss.backward()   	# 自动计算损失函数相对于模型参数的梯度# 更新参数 optimizer.step()	# 使用优化器 optimizer 来更新模型的权重和偏置,以最小化损失函数# 打印log信息# loss 是一个scalar,需要使用loss.item()来获取数值,不能使用loss[0]running_loss += loss.item()if i % 2000 == 1999: # 每2000个batch打印一下训练状态print('[%d, %5d] loss: %.3f' \% (epoch+1, i+1, running_loss / 2000))running_loss = 0.0
print('Finished Training')

输出结果:

[1,  2000] loss: 2.247
[1,  4000] loss: 1.974
[1,  6000] loss: 1.753
[1,  8000] loss: 1.605
[1, 10000] loss: 1.527
[1, 12000] loss: 1.472
[2,  2000] loss: 1.424
[2,  4000] loss: 1.386
[2,  6000] loss: 1.331
[2,  8000] loss: 1.303
[2, 10000] loss: 1.300
[2, 12000] loss: 1.275
Finished Training

enumerate函数

enumerate是Python内置函数之一,用于将一个可迭代的对象(如列表、元组、字符串等)组合为一个索引序列。它返回一个枚举对象,包含了原始对象中的元素以及对应的索引值。

enumerate函数的一般语法如下:

enumerate(iterable, start=0)

其中,iterable是要进行枚举的可迭代对象,start是可选参数,表示起始的索引值,默认为0。

下面是一个简单的例子来说明enumerate函数的用法:

fruits = ['apple', 'banana', 'cherry']
for index, fruit in enumerate(fruits):print(index, fruit)

输出结果:

0 apple
1 banana
2 cherry

在上述示例中,enumerate函数将列表fruits中的元素与对应的索引值配对,然后通过for循环依次取出每个元素和索引值进行打印。

在机器学习或深度学习中,enumerate函数常常与循环结合使用,用于遍历数据集或批次数据,并同时获取数据的索引值。这在模型训练过程中很有用,可以方便地记录当前处理的数据的位置信息。

五、测试网络

部分数据集(实际的label)

dataiter = iter(testloader)
images, labels = next(dataiter) # 一个batch返回4张图片
print('实际的label: ', ' '.join(\'%08s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid(images+1)/2).resize((400,100))

输出结果:

实际的label:  cat     ship      ship      plane

在这里插入图片描述

部分数据集(预测的label)

# 计算图片在每个类别上的分数
outputs = net(images)
# 得分最高的那个类
_, predicted = t.max(outputs.data, 1)print('预测结果: ', ' '.join('%5s'\% classes[predicted[j]] for j in range(4)))

输出结果:

预测结果:  cat      car       ship        plane

在这里插入图片描述

整个测试集

correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数# 使用 torch.no_grad() 上下文管理器,表示在测试过程中不需要计算梯度,以提高速度和节约内存
with t.no_grad():for data in testloader:images, labels = dataoutputs = net(images)_, predicted = t.max(outputs, 1)total += labels.size(0)correct += (predicted == labels).sum()print('10000张测试集中的准确率为: %d %%' % (100 * correct / total))

输出结果:

10000张测试集中的准确率为: 54 %

训练的准确率远比随机猜测(准确率10%)好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/157688.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UI设计一定不能错过的4款常用工具

虽然设计审美很重要,但软件只是一种工具,但就像走楼梯和坐电梯到达顶层一样,电梯的效率显然更高,易于使用的设计工具也是如此。让我们了解一下UI设计的主流软件,以及如何选择合适的设计软件。 即时设计 软件介绍 即…

【数据结构复习之路】数组和广义表(严蔚敏版)万字详解主打基础

专栏:数据结构复习之路 复习完上面三章【线性表】【栈和队列】【串】,我们接着复习数组和广义表,这篇文章我写的非常详细且通俗易懂,看完保证会带给你不一样的收获。如果对你有帮助,看在我这么辛苦整理的份上&#xf…

Go Metrics SDK Tag 校验性能优化实践

背景 Metrics SDK 是与字节内场时序数据库 ByteTSD 配套的用户指标打点 SDK,在字节内数十万服务中集成,应用广泛,因此 SDK 的性能优化是个重要和持续性的话题。本文主要以 Go Metrics SDK 为例,讲述对打点 API 的 hot-path 优化的…

《AI时代架构师修炼之道:ChatGPT让架构师插上翅膀》

本专注于帮助架构师在AI时代 实现晋级、提高效率的图书 书中介绍了如何使用 ChatGPT 来完成架构设计的各个环节 并通过实战案例展示了ChatGPT在实际架构设计中的应用方法 关键点 1.架构设计新模式:让架构设计更高效、更快捷、更完美。 2.全流程解析:涵盖…

物联网整体框架有哪些层面?

物联网是当前非常火热的话题,各个行业对物联网的关注和投入力度也很大,一些互联网巨头都在紧锣密鼓的布局物联网产业,抢占市场先机。 物联网的整体构架大致可以分为以下四个层面: 1.感知识别层 感知层是物联网整体架构的基础&…

项目级asp.net框架的LIMS实验室管理系统源码

LIMS可用于管理完整的实验程序,从样品登记到检验、校核、审核到最终批准报告,建立在过程质量控制的基础上,对检测流程进行有效全面的管理,对影响质量的人、机、料、法、环因素加以控制,同时为质量改进提供数据依据。进…

Azure - 机器学习:使用 Apache Spark 进行交互式数据整理

目录 本文内容先决条件使用 Apache Spark 进行交互式数据整理Azure 机器学习笔记本中的无服务器 Spark 计算从 Azure Data Lake Storage (ADLS) Gen 2 导入和整理数据从 Azure Blob 存储导入和处理数据从 Azure 机器学习数据存储导入和整理数据 关注TechLead,分享AI…

文件夹批量重命名:如何利用上级目录给多个文件夹进行高效重命名

在文件管理中,我们经常需要处理大量的文件和文件夹。其中,文件名过长或混乱的问题经常让我们感到困扰。这不仅影响了我们的工作效率,还可能导致一些错误。为了解决这个问题,我们可以用云炫文件管理器将“上级目录”批量重命名文件…

【STM32】基于HAL库建立自己的低功耗模式配置库(STM32L4系列低功耗所有配置汇总)

【STM32】基于HAL库建立自己的低功耗模式配置库(STM32L4系列低功耗所有配置汇总) 文章目录 低功耗模式(此章节可直接跳过)低功耗模式简介睡眠模式停止模式待机模式 建立自己的低功耗模式配置库通过结构体的方式来进行传参RTC配置…

java入门,JSONObject实现源码解析

一、前言 现在写java程序,很少需要写一些底层的数据结构和算法,因为这些轮子早已造好,拿来用就行。比如在代码中我们经常用到的这个类JSONObject ,还有我们经常使用的String类型,它都是有底层实现的,我们直…

Django 社区志愿者管理系统

摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 社区志愿者服务管理系统,主要的模块包括查看首页、个人中心、通知公告管理、志愿者管理、普通管理员管理、志愿活动管理、活动宣…

【数据结构】单向链表的增删查改以及指定pos位置的插入删除

目录 单向链表的概念及结构 尾插 头插 尾删 ​编辑 头删 查找 在pos位置前插 在pos位置后插 删除pos位置 删除pos的后一个位置 总结 代码 单向链表的概念及结构 概念:链表是一种 物理存储结构上非连续 、非顺序的存储结构,数据元素的 逻辑顺序 是…