无限上下文,多级内存管理!突破ChatGPT等大语言模型上下文限制

目前,ChatGPT、Llama 2、文心一言等主流大语言模型,因技术架构的问题上下文输入一直受到限制,即便是Claude 最多只支持10万token输入,这对于解读上百页报告、书籍、论文来说非常不方便。

为了解决这一难题,加州伯克利分校受操作系统的内存管理机制启发,提出了MemGPT。该模型的最大创新是模仿操作系统的多级内存管理机制,通过数据在不同的内存层级之间的传输,来打破大语言模型固定上下文的限定。

开源地址:https://github.com/cpacker/MemGPT

论文:https://arxiv.org/abs/2310.08560

在这里插入图片描述

MemGPT主要包含主上下文和外部上下文两大内存类型。主上下文相当于操作系统的主内存,是大语言模型可以直接访问的固定长度上下文窗口。

外部上下文则相当于磁盘存储,保存了主上下文之外的额外信息。MemGPT还提供了丰富的功能调用,允许大语言模型主动管理自己的内存而无需人工干预。

这些功能调用可以将信息在主上下文和外部上下文之间进行导入导出。大语言模型可以根据当前任务目标,自主决定何时移动上下文信息以更好利用有限的主上下文资源。

在这里插入图片描述

研究人员在多个测试环境中进行了评估,结果表明,MemGPT可以有效处理远超大语言模型上下文长度限制的文本内容,例如,MemGPT可以处理长度远超过GPT-3.5和GPT-4上下文限制的文档。

当取回的文档数增加时,固定上下文模型的性能受限于取回器的质量,而MemGPT可以通过调用分页机制取回更多文档,其问答准确率也获得提升。

在新提出的多步嵌套关键词提取任务中,MemGPT通过多次调用外部上下文,成功完成了需要跨文档进行多跳查询才能得出解的任务,而GPT-3.5和GPT-4的准确率在嵌套层数增加时急剧下降到0。

主上下文

MemGPT中的主上下文相当于操作系统中的“主内存”,是大语言模型可以直接访问的固定长度上下文窗口。研究人员将主上下文分为三个部分:

系统指令:这部分保存了MemGPT的基本控制逻辑,例如,函数调用模式等,长度固定且只读。

对话上下文:这是一个先入先出的队列,保存了最近的用户交互历史,只读且会在长度超限时裁剪前段对话。

工作上下文:这是一个读写临时存储,大语言模型可以通过功能调用自主向其中写入信息。

需要注意的是,这三个部分合起来,不能超过底层大语言模型的最大上下文长度。

外部上下文

外部上下文保存了主上下文之外的额外信息,相当于操作系统中的“磁盘存储”。外部上下文需要明确的函数调用才能将信息导入主上下文供模型访问,包括以下两种类型:

回溯存储:保存完整的历史事件信息,相当于对话上下文的无压缩版本。

归档存储:通用的读写数据库,可以作为主上下文的溢出空间保存额外信息。在对话应用中,归档存储可以保存有关用户或系统角色的事实、喜好等额外信息。

在这里插入图片描述

回溯存储允许检索特定时间段的历史交互。在文档分析中,归档存储可以支持更大的文档集搜索。

自主编辑与检索

MemGPT通过大语言模型产生的函数调用在内存层级之间主动移动数据,实现自主的编辑与检索。例如,可以自主决定何时在上下文之间移动信息,以适应当前任务目标,无需人工参与。

在这里插入图片描述

创新点在于系统指令中详细描述了内存体系结构和功能调用方法,指导大语言模型学习使用这些工具管理内存。

大语言模型可以根据反馈调整调用策略。同时,当主上下文空间不足时,系统会提醒大语言模型及时保存重要信息,引导其管理内存。

链式调用

在MemGPT中,各种外部事件会触发大语言模型进行推理,这包括用户消息、系统内存警告、用户交互事件等。

功能调用可以请求获取控制权,从而实现链式调用。例如,检索结果分页浏览时,连续调用可以将不同页面的数据收集到主上下文中。

在这里插入图片描述

而Yield调用则会暂停大语言模型,直到下一个外部事件触发才再启动推理。这种基于事件的控制流协调了内存管理、模型推理和用户交互之间的顺畅沟通。

解析器与优化

MemGPT使用解析器验证大语言模型生成的函数调用,检查参数等是否正确。调用后会将结果反馈给模型,这样可以学习调整策略,减少错误。

此外,MemGPT的系统指令可以进行实时更新,以便在不同任务上给模型加入定制化的内存管理指导,实现持续优化。

本文素材来源加州伯克利分校MemGPT论文,如有侵权请联系删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/159623.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习_4 数据训练之线性回归

训练数据 线性回归 基本原理 比如我们要买房,机器学习深度学习来预测房价。房价的影响因素有:卧室数量,卫生间数量,居住面积。此外,还需要加上偏差值来计算。我们要找到一个正确率高的计算方法来计算。 首先&#…

SpringCloud 微服务全栈体系(十)

第十章 RabbitMQ 一、初识 MQ 1. 同步和异步通讯 微服务间通讯有同步和异步两种方式: 同步通讯:就像打电话,需要实时响应。 异步通讯:就像发邮件,不需要马上回复。 两种方式各有优劣,打电话可以立即得…

默认路由配置

默认路由: 在末节路由器上使用。(末节路由器是前往其他网络只有一条路可以走的路由器) 默认路由被称为最后的关卡,也就是静态路由不可用并且动态路由也不可用,最后就会选择默认路由。有时在末节路由器上写静态路由时…

Postgresql在linux环境下以源码方式安装

linux环境下源码方式的安装 1.下载安装包(源码安装方式) 安装包下载 https://www.postgresql.org/ftp/source/ 2.安装postgresql ① 创建安装目录 mkdir /opt/pgsql12② 解压下载的安装包 cd /opt/pgsql12 tar -zxvf postgresql-12.16.tar.gz ③编…

瑞禧生物分享~普鲁士蓝纳米酶 Prussian Blue PB

名称:普鲁士蓝纳米酶:Fe4[Fe(CN)6]3、KFe[Fe(CN)6] NZs 包装:1mg/ml 应用领域:可作为抗氧化、抗炎新材料,同时具有载药、光热疗、炎症组织成像、构建生物传感器件等领域。 普鲁土蓝(Prusian Blue),是一种…

ShareGPT平替!利用苏格拉底提问模拟器更好地蒸馏ChatGPT对话能力

©PaperWeekly 原创 作者 | 孔楚伊 单位 | 深圳市大数据研究院 研究方向 | 自然语言处理 引言 基于真实用户与 ChatGPT 的互动,通过反转学习目标(从学习回复到学习提问),训练更贴近真实用户的模拟器,更好的提问质…

【Mysql系列】从零开始学MySQL:Docker部署快速上手

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

Nacos

简介 NacosEureka(注册中心)Config(配置中心) Bus(服务总线) Nacos是一个MavenSpring Boot项目。 官网:https://nacos.io/zh-cn/docs/what-is-nacos.html https://nacos.io/zh-cn/docs/quick-start.html 源码:https://github.com/alibaba/nacos/ 文档&…

【vscode】Window11环境下vscode使用Fira Code字体【教程】

【vscode】Window11环境下vscode使用Fira Code字体【教程】 文章目录 【vscode】Window11环境下vscode使用Fira Code字体【教程】1. 下载Fira Code字体2. 安装Fira Code字体3. 配置vscode4. 效果如下Reference 如果想要在Ubuntu环境下使用Fira Code字体,可以参考我的…

基于SpringBoot+Vue的旅游系统、前后端分离

博主24h在线,想要源码文档部署视频直接私聊,低价有偿! 基于SpringBootVue的旅游系统、前后端分离 开发语言:Java 数据库:MySQL 技术:SpringBoot、Vue、Mybaits Plus、ELementUI 工具:IDEA/Eci…

AI:52-基于深度学习的垃圾分类

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌本专栏包含以下学习方向: 机器学习、深度学…

DI93a HESG440355R3 通过其Achilles级认证提供网络安全

DI93a HESG440355R3 通过其Achilles级认证提供网络安全 施耐德电气宣布推出Modicon M580以太网PAC (ePAC)自动化控制器,该控制器采用开放式以太网标准,通过其Achilles级认证提供网络安全。M580 ePAC使工厂操作员能够设计、实施和运行一个积极利用开放网…