模型应用系实习生-模型训练笔记(更新至线性回归、Ridge回归、Lasso回归、Elastic Net回归、决策树回归、梯度提升树回归和随机森林回归)

sklearn机械学习模型步骤以及模型

  • 一、训练准备(x_train, x_test, y_train, y_test)
    • 1.1 导包
    • 1.2 数据要求
    • 1.21 导入数据
    • 1.22 数据类型查看检测以及转换
    • 1.22 划分数据
  • 二、回归
    • 2.1 线性回归
    • 2.2 随机森林回归
    • 2.3 GradientBoostingRegressor梯度提升树回归
    • 2.4 Lasso回归
    • 2.5 Ridge岭回归
    • 2.6 Elastic Net回归
    • 2.7 DecisionTreeRegressor决策树模型
    • 自动化模型加评估
  • 三、分类
    • ...未完待续

本次训练的变量是一致对应的,训练准备通过后,后续建模都不会有报错的!

一、训练准备(x_train, x_test, y_train, y_test)

1.1 导包

scikit-learn包以及镜像

pip3 install --index-url https://pypi.douban.com/simple scikit-learn

1.2 数据要求

必须全部为数字类型且无空值才能进行训练,关于非数据类型需要进行相对处理例如:可以采用独热编码或者label编码进行处理。

本文演示的是pandas 的dataframe数据类型的操作,转换成别的类型也同理

1.21 导入数据

import pandas as pd
df = pd.read_csv('data.csv')
df.head(5) #查看数据前五条

1.22 数据类型查看检测以及转换

1. 通过df.info()查看类型以及缺失值情况

df.info()

2. label编码
使用sklearn中的LabelEncoder类,将标签分配给分类变量的不同类别,并将其转换为整数标签。

from sklearn.preprocessing import LabelEncoder
Label_df[i] = LabelEncoder().fit_transform(Label_df[i])

3. 独热编码
pd.get_dummies函数是Pandas中用于执行独热编码的函数。它将类别变量转换为独热编码的形式,其中每个类别将被转换为新的二进制特征,表示原始特征中是否存在该类别。这对于机器学习模型处理分类数据时非常有用。
例如,如果有一个类别特征"color",包含红色、蓝色和绿色三个类别。使用pd.get_dummies函数可以将这个特征转换为三个新的特征"color_red"、“color_blue"和"color_green”,它们的取值为0或1,表示原始特征中是否包含对应的颜色。

df_one_hot = pd.get_dummies(df, columns=['color'])
df_one_hot.replace({False: 0, True: 1})

4. 缺失值处理
直接删除

#删除指定列缺失值
df.dropna(subset=['身份证号'],inplace = True)
#删除NaN值
df.dropna(axis=0,inplace=True)
#全部为空就删除此行
df.dropna(axis=0,how="all",inplace=True)
#有一个为空就删除此行
df.dropna(axis=0, how='any', inplace=True)

填充

#数据填充
df.fillna(method='pad', inplace=True) # 填充前一条数据的值
df.fillna(method='bfill', inplace=True) # 填充后一条数据的值
df.fillna(df['cname'].mean(), inplace=True) # 填充平均值

5. 检测函数这里是我自己定义的高效快速便捷方式
检测函数,输入dataframe用for循环对每列检测和操作, 自动检测空值,object类型数据,并且进行默认操作,
df.fillna(method=‘pad’, inplace=True) # 填充前一条数据的值
df.fillna(method=‘bfill’, inplace=True) # 填充后一条数据的值
独热编码
df_one_hot = pd.get_dummies(df, columns=[‘color’])
返回处理好的dataframe

def process_dataframe(df):df.fillna(method='pad', inplace=True) # 填充前一条数据的值df.fillna(method='bfill', inplace=True) # 填充后一条数据的值df_one_hot = df.copy()for i in df.columns:if df[i].dtype == object:df_one_hot = pd.get_dummies(df, columns=[i]) # 独热编码return df_one_hot

更多dataframe操作可以看一下鄙人不才总结的小处理
http://t.csdnimg.cn/iRbFj

1.22 划分数据

from sklearn.model_selection import train_test_split
x_data = df.iloc[:, 0:-1]  
y_data = df.iloc[:, -1]  
# 划分数据集
x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.3, random_state=42)

二、回归

2.1 线性回归

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
训练以及简单预测

from sklearn.linear_model import LinearRegression
from sklearn import metrics#加载模型训练
Linear_R = LinearRegression()
Linear_R.fit(x_train, y_train)# 预测
y_pred = Linear_R.predict(x_test)# 评估
MAE_lr = metrics.mean_absolute_error(y_test, y_pred)
MSE_lr = metrics.mean_squared_error(y_test, y_pred)
RMSE_lr = metrics.mean_squared_error(y_test, y_pred, squared=False)
R2_Score_lr = r2_score(y_test, y_pred)
print("LinearRegression 评估")
print("MAE: ", MAE_lr)
print("MSE: ", MSE_lr)
print("RMSE: ", RMSE_lr)
print("R2 Score: ", R2_Score_lr)

2.2 随机森林回归

from sklearn.ensemble import RandomForestRegressor
from sklearn import metrics#加载模型训练
RandomForest_R = RandomForestRegressor()
RandomForest_R.fit(x_train, y_train)# 预测
y_pred = RandomForest_R.predict(x_test)# 评估
MAE_Forest= metrics.mean_absolute_error(y_test, y_pred)
MSE_Forest = metrics.mean_squared_error(y_test, y_pred)
RMSE_Forest = metrics.mean_squared_error(y_test, y_pred, squared=False)
R2_Score_Forest = r2_score(y_test, y_pred)
print("LinearRegression 评估")
print("MAE: ", MAE_Forest)
print("MSE: ", MSE_Forest)
print("RMSE: ", RMSE_Forest)
print("R2 Score: ", R2_Score_Forest)

2.3 GradientBoostingRegressor梯度提升树回归

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

这里是引用梯度提升树(GradientBoosting)是一种集成学习方法,通过构建多个弱预测模型(通常是决策树),然后将它们组合成一个强预测模型。梯度提升树通过迭代的方式训练决策树模型,每一次迭代都会针对之前迭代的残差进行拟合。它通过梯度下降的方式逐步改进模型,以最小化损失函数。
梯度提升树在每一轮迭代中,通过拟合一个新的弱模型来纠正之前模型的错误。在每一轮迭代中,它会计算出模型的负梯度(残差),然后用新的弱模型去拟合这个负梯度,使得之前模型的残差得到修正。最终,多个弱模型组合成一个强模型,可以用于回归问题和分类问题。

在Scikit-Learn中,GradientBoostingRegressor是基于梯度提升树的回归模型。它可以通过调节树的数量、树的深度以及学习率等超参数来控制模型的复杂度和泛化能力。梯度提升树在处理各种类型的数据集时都表现良好,并且常被用于解决回归问题。

from sklearn.ensemble import GradientBoostingRegressor
from sklearn import metrics#加载模型训练
GradientBoosting_R = GradientBoostingRegressor()
GradientBoosting_R.fit(x_train, y_train)# 预测
y_pred = GradientBoosting_R.predict(x_test)# 评估
MAE_GradientBoosting= metrics.mean_absolute_error(y_test, y_pred)
MSE_GradientBoosting = metrics.mean_squared_error(y_test, y_pred)
RMSE_GradientBoosting = metrics.mean_squared_error(y_test, y_pred, squared=False)
R2_Score_GradientBoosting = r2_score(y_test, y_pred)
print("GradientBoostingRegressor 评估")
print("MAE: ", MAE_GradientBoosting)
print("MSE: ", MSE_GradientBoosting)
print("RMSE: ", RMSE_GradientBoosting)
print("R2 Score: ", R2_Score_GradientBoosting)

2.4 Lasso回归

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso

Lasso回归(Least Absolute Shrinkage and Selection Operator Regression)是一种线性回归方法,它利用L1正则化来限制模型参数的大小,并倾向于产生稀疏模型。与传统的最小二乘法不同,Lasso回归在优化目标函数时,不仅考虑到数据拟合项,还考虑到对模型参数的惩罚项。
Lasso回归的优化目标函数是普通最小二乘法的损失函数加上L1范数的惩罚项
在这里插入图片描述

from sklearn.linear_model import Lasso
from sklearn import metrics#加载模型训练
Lasso_R = Lasso()
Lasso_R.fit(x_train, y_train)# 预测
y_pred = Lasso_R.predict(x_test)# 评估
MAE_Lasso= metrics.mean_absolute_error(y_test, y_pred)
MSE_Lasso = metrics.mean_squared_error(y_test, y_pred)
RMSE_Lasso = metrics.mean_squared_error(y_test, y_pred, squared=False)
R2_Score_Lasso = r2_score(y_test, y_pred)
print("Lasso 评估")
print("MAE: ", MAE_Lasso)
print("MSE: ", MSE_Lasso)
print("RMSE: ", RMSE_Lasso)
print("R2 Score: ", R2_Score_Lasso)

2.5 Ridge岭回归

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge

from sklearn.linear_model import Ridge
from sklearn import metrics#加载模型训练
Ridge_R = Ridge()
Ridge_R.fit(x_train, y_train)# 预测
y_pred = Ridge_R.predict(x_test)# 评估
MAE_Ridge= metrics.mean_absolute_error(y_test, y_pred)
MSE_Ridge = metrics.mean_squared_error(y_test, y_pred)
RMSE_Ridge = metrics.mean_squared_error(y_test, y_pred, squared=False)
R2_Score_Ridge = r2_score(y_test, y_pred)
print("RidgeCV 评估")
print("MAE: ", MAE_Ridge)
print("MSE: ", MSE_Ridge)
print("RMSE: ", RMSE_Ridge)
print("R2 Score: ", R2_Score_Ridge)

2.6 Elastic Net回归

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html

Elastic Net回归是一种结合了岭回归(Ridge Regression)和Lasso回归(Lasso
Regression)的线性回归模型。它通过结合L1和L2正则化惩罚项来克服岭回归和Lasso回归各自的限制,以达到更好的预测性能。

岭回归使用L2正则化,它通过向损失函数添加一个惩罚项来限制模型参数的大小,防止过拟合。Lasso回归使用L1正则化,它倾向于产生稀疏的模型,即使大部分特征对目标变量没有影响,也会将它们的系数缩减为零。

Elastic
Net回归结合了L1和L2正则化的优点,可以同时产生稀疏模型并减少多重共线性带来的影响。它的损失函数包括数据拟合项和正则化项,其中正则化项是L1和L2范数的线性组合。

Elastic Net回归在特征维度很高,且特征之间存在相关性时很有用。它可以用于特征选择和回归分析,尤其适用于处理实际数据集中的复杂问题。

from sklearn.linear_model import ElasticNet
from sklearn import metrics# 使用训练数据拟合模型
elastic_net = ElasticNet()
elastic_net.fit(x_train, y_train)# 预测
y_pred = elastic_net.predict(x_test)# 评估
MAE_ElasticNet= metrics.mean_absolute_error(y_test, y_pred)
MSE_ElasticNet = metrics.mean_squared_error(y_test, y_pred)
RMSE_ElasticNet = metrics.mean_squared_error(y_test, y_pred, squared=False)
R2_Score_ElasticNet = r2_score(y_test, y_pred)
print("ElasticNet 评估")
print("MAE: ", MAE_ElasticNet)
print("MSE: ", MSE_ElasticNet)
print("RMSE: ", RMSE_ElasticNet)
print("R2 Score: ", R2_Score_ElasticNet)

2.7 DecisionTreeRegressor决策树模型

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

from sklearn.tree import DecisionTreeRegressor
from sklearn import metricsdecision_tree = DecisionTreeRegressor()
decision_tree.fit(x_train, y_train)y_pred = decision_tree.predict(x_test)# 评估
MAE_decision_tree= metrics.mean_absolute_error(y_test, y_pred)
MSE_decision_tree = metrics.mean_squared_error(y_test, y_pred)
RMSE_decision_tree = metrics.mean_squared_error(y_test, y_pred, squared=False)
R2_Score_decision_tree = r2_score(y_test, y_pred)
print("DecisionTreeRegressor 评估")
print("MAE: ", MAE_decision_tree)
print("MSE: ", MSE_decision_tree)
print("RMSE: ", RMSE_decision_tree)
print("R2 Score: ", R2_Score_decision_tree)

自动化模型加评估

from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn.linear_model import ElasticNet
from sklearn.tree import DecisionTreeRegressorfrom sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_error, r2_scoremodellist = [LinearRegression,RandomForestRegressor,GradientBoostingRegressor,Lasso,Ridge,ElasticNet,DecisionTreeRegressor]
namelist = ['LinearRegression','RandomForest','GradientBoosting','Lasso','Ridge','ElasticNet','DecisionTree']
RMSE = []
R2_Score = []for  i in range(len(modellist)):mymodel = modellist[i]tr_model = mymodel()tr_model.fit(x_train, y_train)y_pred = tr_model.predict(x_train)print(f'{namelist[i]} 模型评估 \n  MAE:{mean_absolute_error(y_train, y_pred)} MSE:{mean_squared_error(y_train, y_pred)} RMSE:{mean_squared_error(y_train,y_pred, squared=False)} R2 Score:{r2_score(y_train, y_pred)}')y_pred = tr_model.predict(x_test)RMSE.append(mean_squared_error(y_test,y_pred, squared=False))R2_Score.append(r2_score(y_test, y_pred))
data_show = pd.concat([pd.DataFrame(RMSE),pd.DataFrame(R2_Score),pd.DataFrame(namelist)],axis=1)    
data_show.columns = ['RMSE','R2_Score','model']
data_show

三、分类

…未完待续

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/159678.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

回归预测 | Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量机的多输入单输出回归预测

Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量机的多输入单输出回归预测 目录 Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量机的多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量…

Microsoft 365 管理自动化

Microsoft 365 服务被大多数组织广泛使用,每天生成的数据量巨大。解决 Microsoft 365 中的问题可能非常困难,并且使用多个管理中心来保护组织变得复杂。本机控制台还缺少某些批量管理任务、全面的审计报告和基于角色的精细访问控制。 Microsoft 360 管理…

Mac之NVM|通过brew安装、更新、卸载、重新安装nvm

文章目录 导文通过brew安装NVM通过brew更新NVM通过brew卸载NVM通过brew重新安装NVM 导文 Mac之NVM 通过brew安装、更新、卸载、重新安装 通过brew安装NVM brew install nvm通过brew更新NVM brew upgrade nvm通过brew卸载NVM brew uninstall nvm通过brew重新安装NVM brew re…

自动驾驶算法(五):Informed RRT*算法讲解与代码实现(基于采样的路径规划) 与比较

目录 1 RRT*与Informed RRT* 2 Informed RRT*代码解析 3 完整代码 4 算法比较 1 RRT*与Informed RRT* 上篇博客我们介绍了RRT*算法:我们在找到一个路径以后我们还会反复的搜索。 Informed RRT*算法提出的动机(motivation)是能否增加渐近最优的速度呢?…

BIOS开发笔记 - CMOS

CMOS原来指的是一种生产电子电路的工艺,在PC上一般指的是RTC电路单元,因为早期它是由这种工艺生产出来的,所以又把RTC称作了CMOS。 RTC(Real Time Clock)即实时时钟,用于保存记录时间和日期,也可以用来做定时开机功能。RTC靠一组独立的电源给它供电,这样设计的目的就是…

深入了解汽车级功率MOSFET NVMFS2D3P04M8LT1G P沟道数据表

汽车级功率MOSFET是一种专门用于汽车电子领域的功率MOSFET。它具有高电压、高电流、高温、高可靠性等特点,能够满足汽车电子领域对功率器件的严格要求。汽车级功率MOSFET广泛应用于汽车电机驱动、泵电机控制、车身控制等方面,能够提高汽车电子系统的效率…

pb:导入EXCEL,提示“不能连接EXCEL”

pb:导入EXCEL,提示“不能连接EXCEL” ------------------------------------------------------------------------------------------------------------------------------- 1.pb连上EXCEL代码: //从EXCEL读取文件 STRING LS_PATH,LS_FILE,ls_file_tmp oleobject ole_1…

我的云栖大会之旅:见证云计算创新的15年

云栖大会,曾经是一次不可思议的科技之旅,却如今已见证了我对云计算世界的15年关注和发展。第一次踏上云栖大会之旅,我记得是在2009年。那时的云计算还是一个新生事物,而云栖大会正是其中的奠基石。 我清楚地记得那个炎热的夏天&am…

【C语言】函数指针存疑调试及回调函数编写(结构体内的Callback回调函数传参和虚伪的回调函数__weak声明)

【C语言】函数指针存疑调试及回调函数编写(结构体内的Callback回调函数传参和虚伪的回调函数__weak声明) 文章目录 函数指针存疑调试函数指针函数调用 回调函数编写结构体内的回调函数虚伪的回调函数 附录:压缩字符串、大小端格式转换压缩字符…

基于卷积神经网络的抗压强度预测,基于卷积神经网络的抗折强度预测

目录 背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 卷积神经网络CNN抗压强度预测 完整代码:基于卷积神经网络的抗压强度和抗折强度预测,基于CNN的抗压强度和抗折强度预测(代码完整,数据…

UI设计感大型数据管理仪表盘后台模板源码

大型数据管理仪表盘后台模板是一款适合数据统计管理后台网站模板下载。提示:本模板调用到谷歌字体库,可能会出现页面打开比较缓慢。 演示下载 qnziyw点cn/wysc/qdmb/20838点html

面试算法47:二叉树剪枝

题目 一棵二叉树的所有节点的值要么是0要么是1,请剪除该二叉树中所有节点的值全都是0的子树。例如,在剪除图8.2(a)中二叉树中所有节点值都为0的子树之后的结果如图8.2(b)所示。 分析 下面总结什么样的节…