07 点积

点积

  • 基本运算
  • 几何解释
  • 投影运算和基本运算的联系
    • 多维空间到一维空间的投影
  • 点积的作用

这是关于3Blue1Brown "线性代数的本质"的学习笔记。

基本运算

两个维数相同的向量 [ 2 , 7 , 1 ] T , [ 8 , 2 , 8 ] T [2, 7, 1]^{T},[8, 2, 8]^{T} [2,7,1]T,[8,2,8]T,求它们的点积,就是将对应坐标配对,求出每一对坐标的乘积,并将结果相加。
在这里插入图片描述

图1 点积的运算

几何解释

在这里插入图片描述
在这里插入图片描述

图2 点积的几何解释

几何解释:求两个向量 v ⃗ \vec{v} v w ⃗ \vec{w} w 的点积,就是将向量 w ⃗ \vec{w} w 朝着过原点和向量 v ⃗ \vec{v} v 终点的直线上投影,将投影的长度与向量 v ⃗ \vec{v} v 的长度相乘;或者反过来,将向量 v ⃗ \vec{v} v 朝着过原点和向量 w ⃗ \vec{w} w 终点的直线上投影,将投影的长度与向量 w ⃗ \vec{w} w 的长度相乘。

如果 w ⃗ \vec{w} w 投影方向和 v ⃗ \vec{v} v 的方向相反,点积为负值。

v ⃗ \vec{v} v w ⃗ \vec{w} w 相互垂直,点积为零。

投影运算和基本运算的联系

多维空间到一维空间的投影

将2维向量投影到一维空间(数轴)上,需要做合适的线性变换,即找出合适的变换矩阵;而我们知道,线性变换矩阵的列是基向量变换后的位置,所以,问题就转换为求二维空间基向量 i ⃗ \vec{i} i j ⃗ \vec{j} j 在一维空间上的位置。

对于从二维空间变换到一维空间来说,变换矩阵就是1×2的矩阵。

为了找到这个矩阵的各列值,我们假设一维空间数轴0点和二维平面原点重合,数轴是二维平面上的这样一条线,如图3所示。
在这里插入图片描述

图3 数轴是二维平面上、零点和原点重合的一条线

如图3,现在假设二维平面上一个单位向量 u ⃗ \vec{u} u 碰巧落在这条数轴上。

现在,我们的目的是找到二维平面的基向量 i ⃗ \vec{i} i j ⃗ \vec{j} j 在一维空间,即数轴上的位置。因为基向量变换后的位置就是线性变换矩阵的两个列。

在这里插入图片描述

图4 二维平面的基向量 i ⃗ \vec{i} i j ⃗ \vec{j} j 在数轴上的位置

也就是说,现在要求 i ⃗ \vec{i} i j ⃗ \vec{j} j u ⃗ \vec{u} u 所在直线的投影。我们可以做如图5所示的对称轴来进行。

在这里插入图片描述

图5 利用对称性求 i ⃗ \vec{i} i 变换后在数轴上的位置

由于 i ⃗ \vec{i} i u ⃗ \vec{u} u 都是单位向量,则将 i ⃗ \vec{i} i u ⃗ \vec{u} u 所在直线的投影,与将 u ⃗ \vec{u} u i ⃗ \vec{i} i 所在直线的投影,是完全对称的。

如果要知道 i ⃗ \vec{i} i u ⃗ \vec{u} u 所在直线的投影后落在哪个数上,答案就是 u ⃗ \vec{u} u x ⃗ \vec{x} x 轴投影得到的数。

u ⃗ \vec{u} u x ⃗ \vec{x} x 轴投影得到的数就是 u ⃗ \vec{u} u 的横坐标。

因此,根据对称性,将 i ⃗ \vec{i} i u ⃗ \vec{u} u 所在直线(即斜着的数轴)上投影所得到的数就是 u ⃗ \vec{u} u 的横坐标。

同理,可以得到将 j ⃗ \vec{j} j 在数轴上投影就是 u ⃗ \vec{u} u 的纵坐标。因此,可以求得 i ⃗ \vec{i} i j ⃗ \vec{j} j 变换后的位置,即转换矩阵的各列,如图6所示。
在这里插入图片描述

图6 二维平面的基向量 i ⃗ \vec{i} i j ⃗ \vec{j} j 变换后在数轴上的位置

所以,描述投影变换的1×2矩阵的两列,就分别是 u ⃗ \vec{u} u 的两个坐标。

这个二维平面内任意向量向这个数轴进行投影变换的结果,就是投影矩阵与这个向量相乘。这和这个向量与 u ⃗ \vec{u} u 的点积在计算上完全相同。在这里插入图片描述

图7 投影运算与点积基本运算的关系

投影运算就是用线性变换矩阵与向量相乘,这和点积基本运算是等价的。

点积的作用

点积是理解投影的有利几何工具,可以很方便地检验两个向量的指向是否相同(指向相同,点积结果大于0)。

更深入地,两个向量点乘,就是将一个向量转化为线性变换。
在这里插入图片描述

图8 两个向量点乘,就是将一个向量转化为线性变换

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161793.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

跟着Nature Communications学作图:纹理柱状图+添加显著性标签!

📋文章目录 复现图片设置工作路径和加载相关R包读取数据集数据可视化计算均值和标准差方差分析组间t-test 图a可视化过程图b可视化过程合并图ab 跟着「Nature Communications」学作图,今天主要通过复刻NC文章中的一张主图来巩固先前分享过的知识点&#…

D-Link监控账号密码信息泄露

访问漏洞的 url 为 /config/getuser?index0其中泄露了账号密码 使用泄露的账号密码登陆系统 文笔生疏,措辞浅薄,望各位大佬不吝赐教,万分感谢。 免责声明:由于传播或利用此文所提供的信息、技术或方法而造成的任何直接或间接的…

47基于matlab的水印提取,将水印和载体进行图像融合

基于matlab的水印提取,将水印和载体进行图像融合,成为一体,可对合成图像进行加噪处理,剪切处理,小波压缩处理,旋转处理等操作,最后对合成图像实现水印提取,程序已调通,可…

排序——冒泡排序

冒泡排序的基本思想 从前往后&#xff08;或从后往前&#xff09;两两比较相邻元素的值&#xff0c;若为逆序&#xff08;即 A [ i − 1 ] < A [ i ] A\left [ i-1\right ]<A\left [ i\right ] A[i−1]<A[i]&#xff09;&#xff0c;则交换它们&#xff0c;直到序列…

Web前端—网页制作(以“学成在线”为例)

版本说明 当前版本号[20231105]。 版本修改说明20231105初版 目录 文章目录 版本说明目录day07-学成在线01-项目目录02-版心居中03-布局思路04-header区域-整体布局HTML结构CSS样式 05-header区域-logo06-header区域-导航HTML结构CSS样式 07-header区域-搜索布局HTML结构CSS…

PostgreSQL manual

set path D:\DB\PostgreSQL\16\binconnect to database –h is host name -p is port number -d is database name -U is for user name psql -h localhost -p 5432 -d postgres -U postgres查詢版本信息 select version(); PostgreSQL 8.4.20 on x86_64-redhat-linux-gnu, …

WSL 下载

可以使用单个命令安装运行 WSL 所需的一切内容。 在管理员模式下打开 PowerShell 或 Windows 命令提示符&#xff0c;方法是右键单击并选择“以管理员身份运行”&#xff0c;输入 wsl --install 命令&#xff0c;然后重启计算机。 首先查看可以下载的版本 最后再运行wsl --ins…

【PC电脑windows-学习样例tusb_serial_device-ESP32的USB模拟串口程序+VScode建立工程+usb组件添加+-基础样例学习】

【PC电脑windows-学习样例tusb_serial_device-ESP32的USB模拟串口程序-基础样例学习】 1、概述2、实验环境3-1、 物品说明3-2、所遇问题&#xff1a;ESP32 cannot open source file "tinyusb.h"或者“tinyusb.h:No such file or directory ....”3-3、解决问题&#…

康耐视深度学习ViDi-ViDi四大工具介绍与主要用途

Cognex ViDi 工具是一系列机器视觉工具&#xff0c;通过深度学习解决各种难以解决的挑战。虽然这些工具共享一个引擎&#xff0c;但它们在图像中寻找的内容不同。更具体地说&#xff0c;在分析单个点、单个区域或完整图像时&#xff0c;每个工具都有不同的侧重点。 Locate&…

Alfred 5 for mac(最好用的苹果mac效率软件)中文最新版

Alfred 5 Mac是一款非常实用的工具&#xff0c;它可以帮助用户更加高效地使用Mac电脑。用户可以学会使用快捷键、全局搜索、快速启动应用程序、使用系统维护工具、快速复制粘贴文本以及自定义设置等功能&#xff0c;以提高工作效率。 Alfred for Mac 的一些主要功能包括&#…

多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉 计算机竞赛

文章目录 0 前言2 先上成果3 多目标跟踪的两种方法3.1 方法13.2 方法2 4 Tracking By Detecting的跟踪过程4.1 存在的问题4.2 基于轨迹预测的跟踪方式 5 训练代码6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习多目标跟踪 …

雨水收集设施模块收集和利用雨水成为解决城市供水矛盾的途径之一

雨水收集设施模块是一种高效、环保的雨水收集和利用系统&#xff0c;它通过收集和利用雨水来解决城市供水矛盾。 雨水收集设施模块主要由雨水收集器、储水池、过滤器和水泵等组成。当雨水流入雨水收集器时&#xff0c;经过过滤器的过滤&#xff0c;进入储水池中储存。当需要用…