详细讲解如何求解「内向基环森林」问题

题目描述

这是 LeetCode 上的 「2876. 有向图访问计数」 ,难度为 「困难」

Tag : 「基环森林」、「内向基环树」、「拓扑排序」、「图」、「BFS」

现有一个有向图,其中包含 n 个节点,节点编号从 0n - 1。此外,该图还包含了 n 条有向边。

给你一个下标从 0 开始的数组 edges,其中 edges[i] 表示存在一条从节点 i 到节点 edges[i] 的边。

想象在图上发生以下过程:

你从节点 x 开始,通过边访问其他节点,直到你在 此过程 中再次访问到之前已经访问过的节点。

返回数组 answer 作为答案,其中 answer[i] 表示如果从节点 i 开始执行该过程,你可以访问到的不同节点数。

示例 1: alt

输入:edges = [1,2,0,0]

输出:[3,3,3,4]

解释:从每个节点开始执行该过程,记录如下:
- 从节点 0 开始,访问节点 0 -> 1 -> 2 -> 0 。访问的不同节点数是 3 。
- 从节点 1 开始,访问节点 1 -> 2 -> 0 -> 1 。访问的不同节点数是 3 。
- 从节点 2 开始,访问节点 2 -> 0 -> 1 -> 2 。访问的不同节点数是 3 。
- 从节点 3 开始,访问节点 3 -> 0 -> 1 -> 2 -> 0 。访问的不同节点数是 4 。

示例 2: alt

输入:edges = [1,2,3,4,0]

输出:[5,5,5,5,5]

解释:无论从哪个节点开始,在这个过程中,都可以访问到图中的每一个节点。

提示:


内向基环森林 + 拓扑排序

根据题意,共 n 个点,n 条边,利用 edges,将 iedges[i] 连有向边,可知每个点有唯一的出边,因此这是一张可能包含多棵「内向基环树」的「基环森林」。

基环树是指其具有 个点 条边的联通块,而「内向」是指树中任意节点有且只有一条出边,对应的「外向」是指树中任意节点有且只有一条入边。

例如,左图内向,右图外向:

alt

显然,可根据当前节点是否在“环内”进行分情况讨论:

  • 对于「环内」节点来说,其答案为环节点个数;
  • 对于「环外」节点来说,直观感受应该是由环上节点转移而来。但由于本题给定的是「内向基环树」,因此我们需要对原图进行“反向”,然后从环内节点开始,进行 BFS ,从而更新其余非环节点答案。

具体的,我们使用如下思路进行求解:

  1. 创建大小为 n 的数组 in,进行入度统计;
  2. 根据入度进行「拓扑排序」,剩余满足 的点,为「环内」的点。我们可处理出每个点所在环的大小,环的大小为这些点的答案。处理过程中收集这些「环内」的点(将来要从它们出发,更新其他「环外」节点)
  3. 对原图进行“反向”,从收集好的「环内」点进行出发,运用 BFS 得出剩余点答案。

Java 代码:

class Solution {
    int N = 200010, M = N, idx = 0;
    int[] he = new int[N], e = new int[M], ne = new int[M];
    void add(int a, int b) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx++;
    }
    public int[] countVisitedNodes(List<Integer> edges) {
        int n = edges.size();
        int[] in = new int[n], ans = new int[n];
        for (int x : edges) in[x]++;
        Deque<Integer> d = new ArrayDeque<>();
        for (int i = 0; i < n; i++) {
            if (in[i] == 0) d.addLast(i);
        }
        while (!d.isEmpty()) {
            int t = edges.get(d.pollFirst());
            if (--in[t] == 0) d.addLast(t);
        }
        // 处理环上的
        Set<Integer> set = new HashSet<>();
        for (int i = 0; i < n; i++) {
            if (in[i] == 0continue;
            List<Integer> list = new ArrayList<>();
            list.add(i);
            int j = edges.get(i), val = 1;
            while (j != i) {
                list.add(j);
                j = edges.get(j);
                val++;
            }
            for (int x : list) {
                set.add(x);
                in[x] = 0;
                ans[x] = val;
            }
        }
        // 建立反向图, 处理非环上的, 从环内点出发进行往外更新
        Arrays.fill(he, -1);
        for (int i = 0; i < n; i++) add(edges.get(i), i);
        for (int u : set) {
            int val = ans[u];
            Deque<Integer> de = new ArrayDeque<>();
            de.addLast(u);
            while (!de.isEmpty()) {
                int sz = de.size();
                while (sz-- > 0) {
                    int t = de.pollFirst();
                    ans[t] = val;
                    for (int i = he[t]; i != -1; i = ne[i]) {
                        int j = e[i];
                        if (ans[j] != 0continue;
                        de.addLast(j);
                    }
                }
                val++;
            }
        }
        return ans;
    }
}

C++ 代码:

class Solution {
public:
    int he[200010], e[200010], ne[200010], idx;
    void add(int a, int b) {
        e[idx] = b;
        ne[idx] = he[a];
        he[a] = idx++;
    }
    vector<intcountVisitedNodes(vector<int>& edges) {
        int n = edges.size();
        vector<intin(n, 0)ans(n, 0);
        for (int x : edges) in[x]++;
        queue<int> d;
        for (int i = 0; i < n; i++) {
            if (in[i] == 0) d.push(i);
        }
        while (!d.empty()) {
            int t = edges[d.front()];
            d.pop();
            if (--in[t] == 0) d.push(t);
        }
        set<int> s;
        for (int i = 0; i < n; i++) {
            if (in[i] == 0continue;
            vector<intlist;
            list.push_back(i);
            int j = edges[i], val = 1;
            while (j != i) {
                list.push_back(j);
                j = edges[j];
                val++;
            }
            for (int x : list) {
                s.insert(x);
                in[x] = 0;
                ans[x] = val;
            }
        }
        memset(he, -1sizeof(he));
        for (int i = 0; i < n; i++) add(edges[i], i);
        for (int u : s) {
            int val = ans[u];
            queue<int> de;
            de.push(u);
            while (!de.empty()) {
                int sz = de.size();
                while (sz-- > 0) {
                    int t = de.front();
                    de.pop();
                    ans[t] = val;
                    for (int i = he[t]; i != -1; i = ne[i]) {
                        int j = e[i];
                        if (ans[j] != 0continue;
                        de.push(j);
                    }
                }
                val++;
            }
        }
        return ans;
    }
};
  • 时间复杂度:统计入度复杂度为 ;拓扑排序复杂度为 ;统计「环内」节点答案复杂度为 ;统计「环外」答案复杂度为 。整体复杂度为
  • 空间复杂度:

最后

这是我们「刷穿 LeetCode」系列文章的第 No.2876 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode 。

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161812.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaEE-博客系统3(功能设计)

本部分内容为&#xff1a;实现登录功能&#xff1b;强制要求用户登录&#xff1b;实现显示用户信息&#xff1b;退出登录&#xff1b;发布博客 该部分的后端代码如下&#xff1a; Overrideprotected void doPost(HttpServletRequest req, HttpServletResponse resp) throws Ser…

基于鹰栖息算法的无人机航迹规划-附代码

基于鹰栖息算法的无人机航迹规划 文章目录 基于鹰栖息算法的无人机航迹规划1.鹰栖息搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用鹰栖息算法来优化无人机航迹规划。 1.鹰栖息…

【大数据】Apache NiFi 数据同步流程实践

Apache NiFi 数据同步流程实践 1.环境2.Apache NIFI 部署2.1 获取安装包2.2 部署 Apache NIFI 3.NIFI 在手&#xff0c;跟我走&#xff01;3.1 准备表结构和数据3.2 新建一个 Process Group3.3 新建一个 GenerateTableFetch 组件3.4 配置 GenerateTableFetch 组件3.5 配置 DBCP…

Codeforces Round 882 (Div. 2)

目录 A. The Man who became a God 题目分析: B. Hamon Odyssey 题目分析: C. Vampiric Powers, anyone? 题目分析: A. The Man who became a God 题目分析: n个人分成k组&#xff0c;每一组的力量都是这样的&#xff0c;那么如果分成k组那么就会有k-1个力量不被统计…

前端框架Vue学习 ——(五)前端工程化Vue-cli脚手架

文章目录 Vue-cliVue项目-创建Vue项目-目录结构Vue项目-启动Vue项目-配置端口Vue项目开发流程 Vue-cli 介绍&#xff1a;Vue-cli 是 Vue 官方提供的一个脚手架&#xff0c;用于快速生成一个 Vue 的项目模版 安装 NodeJS安装 Vue-cli npm install -g vue/cliVue项目-创建 图…

Web组件

开发者使用Vue、React等框架来使用及创建定制的组件&#xff0c;Web组件是浏览器原生支持的替代这些框架的特性&#xff0c;主要涉及相对比较新的三个Web标准。这些Web标准允许JS使用新标签扩展HTML&#xff0c;扩展后的标签就是自成一体的、可重用的UI组件。 1 HTML模版 Docu…

15 款 PDF 编辑器帮助轻松编辑、合并PDF文档

PDF 编辑器在当今的数字环境中至关重要&#xff0c;因为 PDF 已成为共享和存储信息的首选格式。只需几分钟&#xff0c;可靠的 PDF 编辑器即可让用户能够根据其特定需求修改、定制和定制文档。在本文中&#xff0c;我们全面汇编了 15 款最佳免费 PDF 编辑器&#xff0c;让您可以…

JAVA应用中线程池设置多少合适?

目录 1、机器配置&#xff1a; 2、核心线程数 3、最大线程数多少合适&#xff1f; 4、理论基础 5、测试验证 一个线程跑满一个核心的利用率 6个线程 12 个线程&#xff1a;所有核的cpu利用率都跑满 有io操作 6、计算公式 7、决定最大线程数的流程&#xff1a; 1、机器…

【JavaScript】零碎知识点总结_2

1. 引入网站图标 可以直接放在根目录 还可以 link 引入&#xff08;推荐&#xff09; <linkrel"shortcut icon"href"./assets/favicon.ico"type"image/x-icon">2. 转换为数字 123 -> 123 除 做字符串拼接&#xff0c;算术运算符都…

中国移动发布《新型智慧城市白皮书》(2023版)

加gzh“大数据食铁兽”&#xff0c;回“20231101”&#xff0c;获取材料完整版 导读 通过本系列白皮书&#xff0c;我们系统的阐述了中国移动对中国智慧城市发展趋势&#xff0c;并对中国移动服务智慧城市建设六大核心能力进行了介绍&#xff0c;详细说明了中国移动智慧城市…

强化学习中策略的迭代

一、策略迭代 一旦使用vπ改善了策略π&#xff0c;产生了更好的策略π0&#xff0c;我们就可以计算vπ0并再次对其进行改进&#xff0c;产生更好的π00。因此&#xff0c;我们可以获得一系列单调改善的策略和值函数&#xff1a; 其中E−→表示策略评估&#xff0c;I−→表示策…

07 点积

点积 基本运算几何解释投影运算和基本运算的联系多维空间到一维空间的投影 点积的作用 这是关于3Blue1Brown "线性代数的本质"的学习笔记。 基本运算 两个维数相同的向量 [ 2 , 7 , 1 ] T , [ 8 , 2 , 8 ] T [2, 7, 1]^{T},[8, 2, 8]^{T} [2,7,1]T,[8,2,8]T,求它们…