17. 机器学习 - 随机森林

茶桁的AI秘籍 核心基础 17

Hi,你好。我是茶桁。

我们之前那一节课讲了决策树,说了决策树的优点,也说了其缺点。

决策树实现起来比较简单,解释解释性也比较强。但是它唯一的问题就是不能拟合比较复杂的关系。

后来人们为了解决这个问题,让其能够拟合更加复杂的情况,提出来了一种模型,这种模型就叫做随机森林。

随机森林

随机森林之所以叫随机森林,是因为它是由多棵树组成。它结合了决策树和随机性的概念,用于解决分类和回归问题,随机森林由多个决策树组成,每棵树都是随机构建的。

随机森林其核心组成部分是决策树,为了提高模型的性能和泛化能力,所以引入了两种主要形式的随机性。

第一种就是随机选择样本,对于每棵决策树的构建,随机森林从训练数据中随机抽取一部分样本(有放回地抽样), 这称为自助采样(Bootstrap Sampling)。这就使得每棵树都在不同的样本子集上进行训练,增加了模型的多样性。

Alt text

第二种是随机选择特征,在每个节点上,随机森林只考虑特征的一个子集来进行分割决策,而不是考虑所有特征。这确保了每棵树的分裂过程是不同的,增加了多样性。

对于分类问题,随机森林中的每棵决策树都会对输入数据进行分类,那对于回归问题,就会变成是每棵决策树都会对输入数据进行预测了。最后的预测结果是通过对所有树的投票或平均值来获得的。这种集成方法可以减小过拟合奉先,提高模型的稳定性和泛化能力。

Alt text

  1. 使用随机森林来预测。
  2. 在预测之前呢,我们使用 Out-Of-Bagging 样本来评估我们的模型。这个bagging就是袋子,就是我们从袋子里随机取东西去衡量。
  3. 使用评估结果,我们可以选择合适的变量数。

随机森林的原理其实很简单,是一个非常简单但是非常好用的一个方法。基本上,除了深度学习之外,也是企业用的最多的方法之一。咱们在这里就来演示一下随机森林的作用以及效果:

from sklearn.datasets import load_iris
iris = load_iris()x = iris.data
y = iris.target
print(x, y)

Alt text

这个是我们用sklearn里面鸢尾花分类的数据做个简单例子,快速的展现一下它的效果。我们将数据拿到以后,x是鸢尾花的四个维度,四个维度对应了它的一个类别。

from sklearn.tree import DecisionTreeClassifiertree_clf = DecisionTreeClassifier()
tree_clf.fit(x, y)tree_clf.feature_importances_---
array([0.02666667, 0.        , 0.05072262, 0.92261071])

我们fit完之后就可以看到,这四个feature中,最终要的是第四个feature。然后是第三个,第二个根本就没用。

from sklearn.model_selection import train_test_splittrain_x, test_x,train_y, test_y = train_test_split(x, y, test_size=0.3, random_state=0)tree_clf = DecisionTreeClassifier()
tree_clf.fit(train_x, train_y)print(tree_clf.score(train_x, train_y))
print(tree_clf.score(test_x, test_y))---
1.0
0.9777777777777777

看结果我们其实可以看到,这个拟合度有点太高了。我们换个数据再来看, 还是之前的课程中我们用到的Boston房价的数据,不过因为这个是一个回归问题,所以我们需要用回归预测的方法:

from sklearn.tree import DecisionTreeRegressor
from sklearn.datasets import fetch_openml
dataset = fetch_openml(name='boston', version=1, as_frame=True, return_X_y=False, parser='pandas')data = dataset['data']
target = dataset['target']x_train, x_test, y_train, y_test = train_test_split(data, target, test_size=0.2)tree_reg = DecisionTreeRegressor()
tree_reg.fit(x_train, y_train)print('whole dataset train acc: {}'.format(tree_reg.score(x_train, y_train)))
print('whole dataset test acc: {}'.format(tree_reg.score(x_test, y_test)))---
whole dataset train acc: 1.0
whole dataset test acc: 0.6606392933985246

现在我们来看,它的train上的score准确度是1.0,在test上是0.81,这个是全数据量测试的情况。

然后我们来定义一个函数:

def random_forest(x_train, y_train, x_test, y_test, drop_n=4):features_random = np.random.choice(list(x_train.columns), size=len(x_train.columns)-drop_n)x_sample = x_train[features_random]y_sample = y_trainreg = DecisionTreeRegressor()reg.fit(x_sample, y_sample)score_train = reg.score(x_sample, y_sample)score_test = reg.score(x_test[features_random], y_test)print('sub sample :: train score: {}, test score: {}'.format(score_train, score_test))y_predicated = reg.predict(x_test[features_random])return y_predicated

咱们随机的从data里面取一些数据,之后我们来看一下单个树的结果:

with_feature_names = pd.DataFrame(data)
with_feature_names.columns = dataset['feature_names']x_train, x_test, y_train, y_test = train_test_split(with_feature_names, target, test_size=0.3, random_state=0)random_forest(x_train, y_train, x_test, y_test, 4)---
sub sample :: train score: 1.0, test score: 0.5171643497313849

单个的结果显然是要比整个的数据量要差。那么咱们现在看一下最终的结果,把它变成一个森林:

tree_num = 4
predicates = []
for _ in range(tree_num):predicated, score = random_forest(x_train, y_train, x_test, y_test)predicates.append((predicated))print('the mean result is: {}'.format(np.mean(predicates), axis=0))
print('the score of forest is: {}'.format(r2_score(y_test, np.mean(predicates, axis=0))))---
the mean result is: 21.614144736842107
the score of forest is: 0.7194989474162439

从一开始到现在完整的打印结果为:

whole dataset train acc: 1.0
whole dataset test acc: 0.6606392933985246ssub sample :: train score: 1.0, test score: 0.5885292814825753
sub sample :: train score: 1.0, test score: 0.559086368163823
sub sample :: train score: 1.0, test score: 0.6119989116140754
sub sample :: train score: 1.0, test score: 0.21831688326567122the mean result is: 21.614144736842107
the score of forest is: 0.7194989474162439

这是个很典型的例子,使用全量的数据集,它的结果最终的在test集上是0.66,然后基本上每个的结都比它要差一些。但当我们用了森林的值做了平均之后,这个值就变得更好了。

当然其实这个值并不是每次都是如此,在我们进行计算的时候,因为数据什么的都是随机的,偶尔也会出现取均值之后变的更差的情况。不过大部分时候,都会更好一些。

我们现在再将结果稍微改一改:

def random_forest(x_train, y_train, x_test, y_test, drop_n=4):...return y_predicated, score_testtree_num = 4
predicates = []
for _ in range(tree_num):predicated, score = random_forest(x_train, y_train, x_test, y_test)predicates.append((predicated, score))predicates_value = [v for v, s in predicates]
forest_scores = [s for v, s in predicates]print('the score of forest is: {}'.format(r2_score(y_test, np.mean(predicates_value, axis=0))))weights = np.array(forest_scores) / np.sum(forest_scores)
score_weights = np.zeros_like(np.mean(predicates_value, axis=0))for i, v in enumerate(predicates_value):score_weights += v * weights[i]print('the score of weighted forest is: {}'.format(r2_score(y_test, score_weights)))---
the score of forest is: 0.7049603534192553
the score of weighted forest is: 0.7204901503020483

后面这段代码呢,其实就是人们发现用了随机森林之后,效果明显要好了,那一些人就想如果在知道每一次的test_score之后,能不能给test_score比较高的值加一个比较大的权重。

也就是说,当我知道test_score比较好,那在最后做决策的时候给它加的权重大一些。

最后我们打印了常规状态下森林的结果和加权之后的结果。加权之后的结果又变得好了一些。

Adaboost

然后人们沿着这个思路,就做了一件事情,就是Adaboost(Adaptive Boosting):

Alt text

Adaboost就是在随机森林的权重思路上做了一个优化,它的示意图也是有多个weak classifier, 然后最后有一个Weighted Voter, 这是一个权重的投票,这个就和我们上面加权的那部分代码非常的类似。只不过它在这里做了个细化:

Alt text

我们来注意看最后一个公式:

H ( x ) = s i g n ( ∑ t = 1 T α t h t ( x ) ) H(x) = sign(\sum_{t=1}^T\alpha_th_t(x)) H(x)=sign(t=1Tαtht(x))

公式里的 α t \alpha_t αt就是它的权重,最终的H(x)就是很多 α t ⋅ h t ( x ) \alpha_t \cdot h_t(x) αtht(x)加在一起的结果。这里的这个 α t \alpha_t αt就是每一次小的数的权重:v * weights[i]。这个权重就不是像咱们刚才代码里那样根据score的大小简单的做个加权。

我们看上图中间又一个 α t \alpha_t αt的公式:

α t = 1 2 l n ( 1 − ε t ε t ) \begin{align*} \alpha_t = \frac{1}{2}ln(\frac{1-\varepsilon_t}{\varepsilon_t}) \end{align*} αt=21ln(εt1εt)

然后我们再往上倒腾, ε t \varepsilon_t εt是当你预测出来这个值和实际值错的越多, 越趋近于1。如果完全没有错,一个错都没有的情况下,那么 ε t = 0 \varepsilon_t=0 εt=0

ε t = P r i ∼ D t [ h t ( x i ) ≠ y i ] \begin{align*} \varepsilon_t = Pr_{i\sim D_t}[h_t(x_i)\ne y_i] \end{align*} εt=PriDt[ht(xi)=yi]

如果 ε t = 1 \varepsilon_t = 1 εt=1的话, 那就是 1 − ε t ε t \frac{1-\varepsilon_t}{\varepsilon_t} εt1εt就是:1-1/1=0。ln0等于什么呢?它等于负的无穷大,那么 α t \alpha_t αt等于就没有。如果 ε t = 0 \varepsilon_t = 0 εt=0 l n ( 1 − ε t ε t ) ln(\frac{1-\varepsilon_t}{\varepsilon_t}) ln(εt1εt)就是无穷大。

也就是说,随着 ε t \varepsilon_t εt越大, 那 α t \alpha_t αt会越大,随着 ε t \varepsilon_t εt越小, α t \alpha_t αt也会越小。而且在这个地方是呈指数变化的,就是误差会对 α t \alpha_t αt的变化影响的很大。

除了用指数的东西来做,它还有一个很重要的特性, 这个特性才在我们整个Adaboost里非常重要:

D t + 1 ( i ) = D t ( i ) e x p ( − α t y i h t ( x i ) ) Z t D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_ty_ih_t(x_i))}{Z_t} Dt+1(i)=ZtDt(i)exp(αtyiht(xi))

我们先来看 y i h t ( x i ) y_ih_t(x_i) yiht(xi)这部分,假设ht(xi)=1, yi预测对了等于1, yi预测错了等于-1。那如果预测错了,这整个部分都等于-1,如果预测对了,这里就是1。

前面有一个负号: − α t y i h t ( x i ) -\alpha_ty_ih_t(x_i) αtyiht(xi),那肯定是要变号的。也就是说,如果预测错了,那么这一串东西应该是正的,如果预测对了这一串东西应该是负的。

前面是什么,是 D t + 1 ( i ) D_{t+1}(i) Dt+1(i), 这里其实就是第i个训练元素在 D t + 1 D_{t+1} Dt+1被取到的概率。那么我们最前面有表示 D 1 ( i ) = 1 m D_1(i) = \frac{1}{m} D1(i)=m1, 也就是说,所有元素被取到的概率都是一样的,是平均的。那第二次的概率就是: D 1 ( i ) ⋅ e x p ( . . . ) D_1(i)\cdot exp(...) D1(i)exp(...), exp就是e的多少次方。

那我们现在知道,如果预测对了,这里是-1, 预测错了这里是1, 都要再乘以 α t \alpha_t αt。那么如果预测对了,这里是 − α t -\alpha_t αt, 那exp这里就是小于1的。那如果预测错了呢,exp就是大于1的。

如果exp大于1,那么 D t + 1 ( i ) D_{t+1}(i) Dt+1(i)概率就会被 D t ( i ) D_t(i) Dt(i)的概率要更大,反之就会更小。

这个就是我们Ada的含义,Ada就是Adaptive, 就是动态调整的意思。也就是通过这种方法实现的。

如果此时此刻 x i x_i xi算对了,那下一次就更不容易被取到,如果算错了,那下一次训练就会更有可能被取到。

觉得绕的小伙伴去理解这样一个例子:如果你是个学生去做卷子,那么你作对的题还会反复去做吗?肯定是不会的题才会反复刷,刷到自己会为止。

Gradient Boosting

除了Adaboost之外,后来人们又提出来了一个新的方法: Gradient Boosting。

Alt text

Gradient Boosting和Adaboost的核心原理很像:

l o s s ( p , q ) = − ∑ i ∈ o u t p u t c l a s s e s p ( x ) l o g q ( x ) loss(p, q) = -\sum_{i\in output classes}p(x)logq(x) loss(p,q)=ioutputclassesp(x)logq(x)

Gradient Boosting主要用于解决回归和分类问题。它基于决策树(通常是浅层决策树)构建模型,通过迭代改进预测的准确性。

其最核心的就是梯度提升,是一种集成学习方法。将多个弱预测模型,也就是决策树组合在一起,以提高整体性能。每个决策树在不同的数据子集上训练,然后进行组合以生成最终的预测。其核心原理就是通过迭代优化损失函数来构建模型。

在每一步中,模型的更新方向就是损失函数的负梯度。假设我们有一个损失函数L(y, f(x)), 其中y是真实标签, f(x)是当前模型的预测,梯度提升的目标是找到一个新的模型h(x), 使得损失函数L(y, f(x) + h(x))最小化。

梯度提升使用负梯度方向的决策树h(x)来拟合当前模型的残差,因此可以通过以下方式迭代更新模型:

f ( x ) = f ( x ) + l e a r n i n g _ r a t e ⋅ h ( x ) f(x) = f(x) + learning\_rate \cdot h(x) \\ f(x)=f(x)+learning_rateh(x)

也就是说,它其实要变成这样一个式子:

B o o s t e d E n s e m b l e = F i r s t T r e e + η ⋅ S e c o n d T r e e l o s s ( B o o s t e d E n s e m b l e ) < l o s s ( F i r s t T r e e ) Boosted Ensemble = First Tree + \eta \cdot Second Tree \\ loss(Boosted Ensemble) < loss(First Tree) BoostedEnsemble=FirstTree+ηSecondTreeloss(BoostedEnsemble)<loss(FirstTree)

也就是说,我们第二波的h_t(x),也就是h_2(x),前面乘以一个 η \eta η,这个 η \eta η是等于Learning Rate的,然后h_2(x)加上h_1(x)最后得到的结果,要比h_1(x)的loss值更小。

Alt text

那么我们现在要做的就是改变 η \eta η的权重,这个东西的权重就是和之前我们在随机森林里调整权重不同。

一开始,梯度提升初始化一个简单的模型,通常是一个常数,用来拟合目标变量的平均值。

对于每一个训练样本,计算模型的梯度。这表示模型对于每个样本的预测误差。

使用新的决策树来拟合梯度的负梯度,也就是模型的残差。这意味着构建一个决策树,其目标是减小之前模型的误差。

将新构建的决策树与之前的模型相加,以形成一个新的模型。这个过程重复进行多次,每次都会减小误差。

重复2到4步,直到满足某个停止条件,理入达到最大迭代次数或误差足够小。

最终模型是所有决策树的组合,可以用来进行预测。

那我们之前谈到的 η \eta η,也就是learning_rate,其实就是学习率,用于控制每次更新的幅度。

数学上,梯度提升通过迭代不断减小损失函数来逼近最优模型,这是一种梯度下降的优化方法,因此它的核心原理与梯度下降算法是密切相关的。

Grading Boost和AdaBoost的整个区别不大,它们都是属于Ensemble Learning,中文翻译是合唱团。

这个Ensemble Learning我们可以取很多个分类、回归,然后我们把它做好之后给它求一个平均值。

Alt text

比如这样,

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVClog_clf = LogisticRegression()
rnd_clf = RandomForestClassifier()
svm_clf = SVC()voting_clf = VotingClassifier(estimators = [('lr', log_clf),('rf', rnd_clf),('svc', svm_clf)], voting='hard')voting_clf.fit(x_train, y_train)
...

在sklearn的ensemble中本身就有一个VotingClassifier,也有RandomForestClassifier,我们可以直接用几个分类器可以实现。

AdaBoost和Gradient Boost也是属于一个典型的ensemble Learning。

那还有两个比较重要的东西,一个叫做Xgboost,一个叫做LightBGM,这两个是Grading Boost的升级版。它们被广泛的使用于机器挖掘,推荐系统等等。

当然这两块内容就不放在「核心基础」里讲了,将会在后面讲到BI专业课的时候专门的去讲,这两个是很重要的点。

那本节课讲完之后呢,咱们核心基础的部分,关于机器学习就跨过一个小阶段了。下一节课开始,我们要讲「深度学习」了。属于向前要跨一大步。

好,那咱们经典机器学习模型到今天就讲完了。各位看文章的小伙伴,自己去把这个课程再好好巩固一下,咱们下节课开始,就进入深度学习了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/162651.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

操作系统·操作系统引论

1.1 操作系统的目标和作用 1.目前常见操作系统&#xff1a; 微软&#xff1a;Windows系列&#xff08;以前MS-DOS&#xff09; UNIX&#xff1a;Solaris, AIX, HP UX, SVR4, BSD, ULTRIX 自由软件&#xff1a;Linux, freeBSD, Minix IBM: AIX, zOS(OS/390), OS/2, OS/400, PC…

NSSCTF第十页(2)

[HNCTF 2022 WEEK3]ssssti 题目提示是jinja2模板 怎么感觉之前做过&#xff0c;看到了注入 随便进行一下注入&#xff0c;发现了过滤 大致的黑名单 " _ args -- 无法使用 request.args os -- 无法导入os 不允许post -- 无法使用 request.value 正常用的payloa…

Wpf 使用 Prism 实战开发Day04

一.菜单导航实现 1.首先创建出所有的页面(View)及对应的页面逻辑处理类(ViewModel) IndexView(首页)-----------------IndexViewModelToDoView(待办事项)------------ToDoViewModelMemoView(忘备录)--------------MemoViewModelSettingsView(设置)--------------SettingsViewMo…

远程管理SSH服务

一、搭建SSH服务 1、关闭防火墙与SELinux # 关闭firewalld防火墙 # 临时关闭 systemctl stop firewalld # 关闭开机自启动 systemctl disable firewalld ​ # 关闭selinux # 临时关闭 setenforce 0 # 修改配置文件 永久关闭 vim /etc/selinux/config SELINUXdisabled 2、配置…

ChatGPT 的 Text Completion

该章节我们来学习一下 “Text Completion” &#xff0c;也就是 “文本完成” 。“Text Completion” 并不是一种模型&#xff0c;而是指模型能够根据上下文自动完成缺失的文本部分&#xff0c;生成完整的文本。 ⭐ Text Completion 的介绍 Text Completion 也称为文本自动补全…

RxJava/RxAndroid的基本使用方法(一)

文章目录 一、什么是RxJava二、使用前的准备1、导入相关依赖2、字段含意3、Upstream/Downstream——上/下游4、BackPressure5、BackPressure策略6、“热” and “冷” Observables7、 基类8、事件调度器9、操作符是什么&#xff1f; 三、RxJava的简单用法1、Observable——Obse…

uniapp小程序刮刮乐抽奖

使用canvas画布画出刮刮乐要被刮的图片&#xff0c;使用移动清除画布。 当前代码封装为刮刮乐的组件&#xff1b; vue代码&#xff1a; <template><view class"page" v-if"merchantInfo.cdn_static"><image class"bg" :src&q…

Scientific colour maps颜色包--共35种--全平台可用

Scientific colour maps颜色包–共35种–全平台可用 往期推荐&#xff1a; SciCoMap颜色包_共180种–全平台可用 海洋专用cmocean颜色包_共22种–全平台可用 Python语言_matplotlib包_共80种–全平台可用 Python语言_single_color_共140种–全平台可用 R语言_RColorBrewer包–…

Flutter 08 三棵树(Widgets、Elements和RenderObjects)

一、Flutter三棵树背景 1.1 先思考一些问题 1. Widget与Element是什么关系&#xff1f;它们是一一对应的还是怎么理解&#xff1f; 2. createState 方法在什么时候调用&#xff1f;state 里面为啥可以直接获取到 widget 对象&#xff1f; 3. Widget 频繁更改创建是否会影响…

如何释放React Hooks的力量

React是用于构建用户界面的一个流行JavaScript库&#xff0c;多年来已经发生了重大变化和改进。React中最具颠覆性的新特性之一就是引入了Hooks。React Hooks彻底改变了开发者在函数组件中管理状态和生命周期的方式。在这个全面的指南中&#xff0c;将深入研究React Hooks的世界…

Linux友人帐之网络编程基础www服务器

一、概述 1.1www基础 WWW&#xff08;World Wide Web&#xff0c;万维网&#xff09;是一种分布式、全球性的信息服务系统&#xff0c;是集成Internet、Web浏览器和Web服务器等技术而形成的一个庞大的、涉及全球的信息网络。 用户在浏览器中输入www.cqvie.edu.cn访问该网站主页…

行政处罚有哪些?

一、行政处罚的定义 行政处罚&#xff0c;是指行政机关依法对违反行政管理秩序的公民、法人或者其他组织&#xff0c;以减损权益或者增加义务的方式予以惩戒的行为。这是首次以立法的形式明确“行政处罚”的定义。 二、行政处罚与行政处分的区别 行政处分是指国家行政机关对其…