美国阿贡国家实验室发布快速自动扫描套件 FAST,助力显微技术「快速阅读」成为可能

「我高兴地在北京市的天安门广场上看红色的国旗升起」

快速阅读一下这个句子,大家可能会发现,只需「我在天安门广场看升旗」几个字,就能概述我们需要的信息,也就是说,无需逐字逐句地阅读,抓住重点即可破译全部信息。那么,科学研究是不是也能如此呢?

受此启发,研究人员将人工智能 (AI) 与显微技术结合,训练 AI 主动识别样本中的关键特征,供研究者分析。不同于传统显微技术中对样本的全点式扫描,AI + 显微技术的方法彻底改变了研究人员获取样本数据的方式,显著加快实验进程,实现了微观层面的「快速阅读」。

作者 | 加零

编辑 | 雪菜、三羊

显微镜的原理是通过扫描样品产生空间分辨信号,收集信号进行分析,从而形成样品图像。随着仪器仪表技术的不断进步,显微镜的扫描速度和分辨率都有了很大提升。

但是,高分辨率的显微扫描实验有一些明显的缺点:产生的数据量庞大,且探针对样品的损伤也很大。 以在 ≈10 nm 的分辨率下进行 1mm^3 体积的 X 射线成像为例,传统扫描方式会产生 10^15 体素的数据,并且需要相当大剂量的探针。

同时,样本中的大多区域信息密度低、可以直接忽略,反而是少部分的「边界、缺陷、特殊元素」区域包含丰富的信息量,需要重点研究

精准定位信息密度大的关键区域,传统方法主要依赖经验丰富的操作员分析数据、指导探针扫描,这极大增加了工作量,拖慢实验进度。

那么,有没有可能引入 AI ,让它帮助研究者识别样本中的研究重点,加速数据采集和分析呢?

在这里插入图片描述

在 APS 进行自动暗场扫描显微实验的艺术图示

为此,美国阿贡国家实验室 (Argonne National Laboratory) 的研究人员开发了 FAST (Fast Autonomous Scanning Toolkit),它是一个快速自动扫描套件,与传统显微镜研究样本的全点式扫描不同,FAST 允许 AI 自动识别扫描的位置,从而高效精准的获取样本信息。 目前相关成果已发表于「Nature Communications」。

在这里插入图片描述

相关成果已发表于「Advanced Science」

FAST 科研人员在模拟测试 (simulations) 及暗场 X 射线 (dark-field X-ray) 显微镜实验中,对 WSe2 film 进行了 FAST 扫描,结果表明, <25% 的 FAST 扫描就足以准确地成像并分析样本。

论文链接:

https://www.nature.com/articles/s41467-023-40339-1

实验过程

训练数据利用通用图像训练算法

FAST 所采用的算法不需要利用大型数据集开展训练,AI 可利用通用图像识别感兴趣的区域。

训练数据由 MIT Libraries,USC-SIPI Image Database 和 Scikit-image software package 公开提供的图像生成。

在这里插入图片描述

所用的测试图像示例

FAST快速自主扫描工具套件

FAST 全称 Fast Autonomous Scanning Toolkit,它结合了 SLADS-Net 方法、路径优化技术以及高效且模块化的硬件控制, 是一个快速自主扫描工具套件,可用于基于同步加速器的扫描显微镜 (synchrotron-based scanning microscopy) 的实时采样和扫描路径选择。

在这里插入图片描述

FAST 工作流程

A: 一组准随机 (quasi-random) 初始测量值被传输到边缘设备,依次生成初始样本估计,计算下一个要测量的候选点 (candidate points),并计算出测量路径。新测量值与现有的测量值结合,计算新估计值,重复该过程直至达到完成标准。

B: 候选点运算开始时会检查每个未被测量 point P(半径为 r)的局部邻域,已经测量过的点会高亮,从而生成 6 维特征向量。使用径向基核函数 (RBF) 内核将特征向量转换为 50 维向量,并作为多层神经网络 (NN) 的输入。接下来神经网络 (NN) 会通过测量 point P 对图像预期改进进行预测 (ERD)。选择 ERD 最高的一组未测量像素,作为下次测量的候选。

FAST 的训练不依赖具体的样本数据, 就可以动态测量和重构一个复杂的(非二进制)样本,这与现有的基于 SLADS 的工作流程有所不同。此外,与获取时间 (acquisition time) 相比,其计算成本可以忽略不计,即使运行在低功耗边缘计算设备(放在同步加速器束线)上也是如此,这对于更通用的自主实验技术而言具有显著优势。

这些特性使得 FAST 能够应用于 APS hard X-ray nanoprobe beamline 上现有的高精度纳米级扫描 X 射线显微镜仪器。

性能验证

FAST优于静态取样方法

为了验证 FAST 的性能,研究人员将其与另外 3 种静态取样技术进行了对比实验。

实验对象: 即测试数据集,为一张 600 × 400 像素的暗场图像,代表 24 万个可能的测量位置,覆盖 900 × 600 μm 的物理区域,并包含多片不同厚度的 WSe2 切片;

对比方式: 3 种静态采样技术分别为栅格 (RG, Raster grid) 采样、均匀随机 (UR, Uniform random) 采样、低差异 (LDR, Low-discrepancy) 准随机采样;

实验过程: 在相同的扫描覆盖率下,生成 FAST、RG、UR 和 LDR 采样重建图像。

对比一:

在这里插入图片描述

FAST 与静态采样重建图像对比

A : ground truth 图像,颜色刻度代表归一化强度

B-D: 10% 扫描覆盖率下 RG、LDR 和 FAST 重建图像

结果显示:FAST 采样能够高保真地再现实验对象中边界、气泡和不同厚度水平之间的过渡区域。

对比二:

在这里插入图片描述

不同扫描覆盖率下FAST 与静态采样方法性能对比

A: 归一化平方平均数误差 (NRMSE) 随扫描覆盖率的变化,值越低性能越优;

B: 结构相似性度量 (SSIM) 随扫描覆盖率的变化,值越高性能越优。

结果显示:FAST 采样效率高,在扫描覆盖率达到 27% 时,实现了稳定重建;静态取样的 3 种方法要达到同样的效果,则需要更长的时间。

对比三

在这里插入图片描述

相同取样条件下,覆盖率 10% 时 FAST 及 2 种静态取样方法的实际测量位置

结果显示,FAST 重建结构相似性高,误差低。

未来可通过在 FAST 方法中使用更复杂的修复技术 (inpainting technique),来进一步改善结果。

以上 3 组对比结果显示:

FAST 优于静态采样技术。FAST 会优先选择具有显著异质性的区域进行采样,而非均匀区域。这极大减少了在空白区域无效取样的时间,对稀疏样本特别有效。

FAST:具备高效、精准的暗场图像重建能力

在同步加速器光束线实验中,FAST 进一步展现了卓越性能。

此实验过程完全由 AI 自驱动进行,研究人员除启动 FAST 脚本外没有进行任何干扰。实验样本是变形的 WSe2 薄片,空间分辨率为 100 nm。

在这里插入图片描述

FAST 扫描的演进

A、C、E : 5% 、15% 和 20% 扫描覆盖率下 FAST 重建暗场图像;

B、D、F : 相应的实际测量点;

G : 通过全网格逐点扫描(100% 覆盖率)获得的图像;

A-G: 颜色刻度显示了归一化强度;

H: 仅显示在 15%-20% 覆盖率之间的采样点。

上图显示,低扫描覆盖率的情况下,FAST 方法优先识别了一些异质性区域, 如气泡的边缘;随着扫描覆盖率逐步上升,重建结果越发清晰,在 15%-20% 的扫描覆盖率之间重建图像达到稳定。

20% 扫描覆盖率下,FAST 可清晰、准确地复制全扫描图像中所有主要特征, 同时帮助实验节省约 80 分钟 (≈65%) 的时间,大大提高了实验效率。

AI + 显微技术的未来

FAST 流程的优势不仅在提升显微数据采集效率,还在于广泛的应用范围。 来自美国阿贡国家实验室的科学家 Tao Zhou 说「从 X 射线显微镜到电子显微镜再到原子探针显微镜,这种技术可以为任何需要二维扫描的显微镜研究赋能」。

未来,AI 技术也将在显微技术领域迎来更深入地应用。通过训练,AI 正逐步接手如自动化图像分析和识别、图像增强和重建、定量分析和疾病诊断等任务。

AI + 显微技术,朝着更清晰、更高效、更精准的未来走去,科学研究的边界也将不断拓宽。

参考链接:

[1]https://www.nature.com/articles/s41467-023-40339-1

[2]https://phys.org/news/2023-10-artificial-intelligence-scientists-self-driving-microscopy.html

[3]A Supervised Learning Approach for Dynamic Sampling

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/162706.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Node.js |(五)包管理工具 | 尚硅谷2023版Node.js零基础视频教程

学习视频&#xff1a;尚硅谷2023版Node.js零基础视频教程&#xff0c;nodejs新手到高手 文章目录 &#x1f4da;概念介绍&#x1f4da;npm&#x1f407;安装npm&#x1f407;基本使用&#x1f407;生产依赖与开发依赖&#x1f407;npm全局安装&#x1f407;npm安装指定包和删除…

青翼科技-国产化ARM系列TES720D-KIT

板卡概述 TES720D-KIT是专门针对我司TES720D&#xff08;基于复旦微FMQL20S400的全国产化ARM核心板&#xff09;的一套开发套件&#xff0c;它包含1个TES720D核心板&#xff0c;加上一个TES720D-EXT扩展底板。 FMQL20S400是复旦微电子研制的全可编程融合芯片&#xff0c;在单…

十一、K8S之持久化存储

持久化存储 一、概念 在K8S中&#xff0c;数据持久化可以让容器在重新调度、重启或者迁移时保留其数据&#xff0c;并且确保数据的可靠性和持久性。 持久化存储通常用于程序的状态数据、数据库文件、日志文件等需要在容器生命周期之外的数据&#xff0c;它可以通过各种存储解…

C++ 动态规划。。。

#include <iostream> #include <algorithm> using namespace std; // 定义一个常量&#xff0c;表示无穷大 const int INF 1e9; int dp[1000 2];// 定义一个函数&#xff0c;计算数组中某个区间的和 int sum(int arr[], int start, int end) {int s 0;for (int …

从NetSuite Payment Link杂谈财务自动化、数字化转型

最近在进行信息化的理论学习&#xff0c;让我有机会跳开软件功能&#xff0c;用更加宏大的视野&#xff0c;来审视我们在哪里&#xff0c;我们要到哪去。 在过去20多年&#xff0c;我们的财务软件经历了电算化、网络化、目前处于自动化、智能化阶段。从NetSuite这几年的功能发…

ATE新能源汽车充电桩自动负载测试系统

随着新能源汽车的普及&#xff0c;充电桩的需求也在不断增加&#xff0c;为了确保充电桩的性能和安全性&#xff0c;对其进行负载测试是非常重要的。ATE新能源汽车充电桩自动负载测试系统是一种专门用于检测充电桩性能的设备&#xff0c;它可以模拟各种实际使用场景&#xff0c…

C++模板编程与泛型编程之函数模板

文章目录 函数模板(第一部分)定义函数模板使用函数模板样例 两阶段翻译 Two-Phase Translation模板的编译和链接问题 多模板参数引入额外模板参数作为返回值类型让编译器自己找出返回值类型将返回值声明为两个模板参数的公共类型样例 默认模板参数样例 重载函数模板模板函数特化…

【八股哪背的完】Redis我先背这点儿,够用!

Redis篇 数据类型及其业务场景 字符串&#xff08;String&#xff09; 字符串类型是最基本的数据类型&#xff0c;value 最多可以容纳的数据长度是 512M。 存储任意类型的数据&#xff0c;包括数字、文本等。适用于缓存、计数器、分布式锁等场景。共享 Session 信息 哈希&am…

人,要懂得享受孤独

喜欢在如水的月光下&#xff0c;望一轮洁白的皓月&#xff0c; 喜欢在清寂的夜晚&#xff0c;看那星光流转倏忽间的变幻&#xff0c;牵动心中万千情怀。 独享这份清幽&#xff0c;遐想那月中寻桂子的浪漫。 这个世界太喧闹&#xff0c;偶尔&#xff0c;需要关一关窗&#xff0c…

vue3生命周期源码详解

钩子函数的特点 Vue 生命周期钩子函数是在组件生命周期中执行的特定函数。 这些钩子函数允许你在组件不同的生命周期阶段插入自定义的逻辑代码。 Vue 提供了一组预定义的生命周期钩子函数&#xff0c;每个钩子函数在组件生命周期的不同阶段被调用。 源码中如何注册、实现钩子函…

跨境电商商城源码,助力商家全球布局(多语言切换\多货币转换\多商户入驻)

今天&#xff0c;我们要给大家介绍一款强大且多元化的跨境电商解决方案——WoShop跨境电商源码!这款源码拥有许多令人惊叹的功能&#xff0c;其中最引人注目的就是支持多语言切换、多货币转换以及多商户入驻! 设想一下&#xff0c;你是一个跨境电商的卖家&#xff0c;你的业务遍…

哪一波最容易亏钱,昂首资本这样讲

有交易者咨询anzo capital昂首资本&#xff0c;按照波浪理论最容易亏钱是在第几波&#xff0c;通过调查得知80%的错误发生在第四波。所以对哪一波最容易亏钱&#xff0c;很有可能就是第四波。当然了如果能准确的判断第四波时&#xff0c;也可能获得相当丰厚的利润。 第四波通…