数据标注工具【LabelImg】安装使用 用VOC制作自己的数据集

labelImg的安装

  • ⭐️LabelImg简介
  • ⭐️LabelImg的安装
  • ⭐️labelImg标注数据集
  • ⭐️利用VOC制作自己的数据集

⭐️LabelImg简介

Labelimg是一款开源的数据标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用,它可以标注三种格式。

   1 VOC标签格式,保存为xml文件。2  yolo标签格式,保存为txt文件。3 createML标签格式,保存为json格式。

⭐️LabelImg的安装

首先,用conda创建一个新的环境
conda create -n py38 python=3.8
查看已有环境列表:
conda envs list

然后,激活环境py38
conda activate py38

然后在py38这个环境中下载labelImg即可
pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
然后在py38环境下输入 labelImg即可打开labelImg

打开如图界面:

labelImg的使用

比较常用的快捷键:
画框 W
下一张

⭐️labelImg标注数据集

Open Dir我选择水果数据集进行标注

该数据集一共有五个标签。
为方便标注,选取了一部分各类别的水果至一个文件夹JPEGImages中进行标注。
点击Change save Dir我将标注的数据集存放在路径
标注好的数据集如下,为xml格式:

⭐️利用VOC制作自己的数据集

新建文件夹,并在新建的文件夹下新建AnnotationsImageSetsJPEImages三个文件夹,在ImageSets下新建Main文件夹。

将自己的数据集图片拷贝到JPEGImages目录下。
即:

将数据集label文件拷贝到Annotations目录下。
即:

在主文件夹下新建test.py文件夹,输入以下代码进去运行,将生成四个文件:train.txt,val.txt,test.txt和trainval.txt。

import os
import randomtrainval_percent = 0.8  #val即Validation(验证),即训练集和验证机占全体数据的比例
train_percent = 0.9  #训练集占训练集和验证集总体的比例
xmlfilepath = 'D:\\A_data\\fruits\VOC\\Annotations' #这里是我的绝对路径
txtsavepath = 'D:\\A_data\\fruits\\VOC\\ImageSets\Main' #我的绝对路径 如果使用需要修改
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)  # 训练集和验证集总个数
tr = int(tv * train_percent)  # 训练集总个数
trainval = random.sample(list, tv)  
train = random.sample(trainval, tr)#需要生成以下四个文件,分别是test.txt,train.txt,trainval.txt,val.txt
#分别代表测试集、训练集、训练-验证集、验证集
ftrainval = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\trainval.txt', 'w')
ftest = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\test.txt', 'w')
ftrain = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\train.txt', 'w')
fval = open('D:\\A_data\\fruits\\VOC\\ImageSets\\Main\\val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftest.write(name)else:fval.write(name)else:ftrain.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

运行结束后,我们可以查看txt文件,我们的数据集已经制作完成。
test数据集:

103
105
109
11
111
115
117
119
125
129
131
135
137
139
143
149
15
151
153
157
161
163
165
167
169
23
25
29
3
31
33
35
37
39
43
45
47
49
5
51
53
55
57
61
63
67
7
71
73
75
77
79
81
85
87
89
9
93
95
97
99

train数据集:

101
107
113
121
123
133
141
147
155
159
17
19
21
41
59
65
83
91

训练验证集

1
103
105
109
11
111
115
117
119
125
127
129
13
131
135
137
139
143
145
149
15
151
153
157
161
163
165
167
169
171
23
25
27
29
3
31
33
35
37
39
43
45
47
49
5
51
53
55
57
61
63
67
69
7
71
73
75
77
79
81
85
87
89
9
93
95
97
99

验证集:

1
127
13
145
171
27
69

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/164122.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IGP高级特性简要介绍(OSPF-上篇)

OSPF高级特性 一、OSPF_提升故障收敛及网络恢复速度 1.FRR与BFD快速恢复故障 1.1 FRR 在传统转发模式下,当到达同一个目的网络存在多条路由时,路由器总是选择最优路由使用,并且下发到FIB表指导数据转发。 当最优路由故障时,需…

Unity 实现文字过长显示省略号

为了整体效果,当文字过长时,我们就会把超出范围的文字弄成省略号。 要实现文字过长显示省略号,只需要使用TextMeshPro,并设置Overflow属性为Ellipsis即可。 如下图: 记。

高并发下Redis缓存与数据库双写一致性问题原理分析和解决方案

目录 一、什么是缓存与数据库双写不一致性二、常见保证高并发下双写一致性方案2.1、延迟双删(不可靠)2.2、分布式读写锁(可靠)2.3、MQ异步消费(不可靠)2.4、订阅数据库变更日志(不可靠&#xff…

机器视觉软件破解的背后是道高一尺,魔高一丈

讲个故事,小明从某购物平台花2000元买了一个C#机器视觉架构,压缩包带加密,卖家让小明先确认收货后给密码。 小明花了3元从另外一家卖家破解开压缩包密码,然后迅速从第一家卖家退货。小明成功省了1997元。 “道高一尺&#xff0c…

使用Android Jetpack Compose渲染效果打造酷炫的动画效果

如何在Android Jetpack Compose中使用渲染效果打造令人惊艳的视觉体验 学习示例:如何使用渲染效果来改变UI界面 引言 Jetpack Compose提供了各种工具和组件来构建引人入胜的UI,而在Compose中较为鲜为人知的一个宝藏是RenderEffect。 在这篇博文中&a…

操作系统引论(二)

操作系统发展动力及技术基础 推动操作系统的发展和资源利用率的提高是相关联的。 让输入输出相对独立,通道技术,通道相当于简单的处理器,通过输入输出指令,控制外设完成输入输出。 输入和输出过程不是由主机控制的,是…

【深度学习】pytorch——神经网络工具箱nn

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 深度学习专栏链接: http://t.csdnimg.cn/dscW7 pytorch——神经网络工具箱nn 简介nn.Modulenn.Module实现全连接层nn.Module实现多层感知机 常用神经网络层图像相关层卷积层(Conv&#xff…

Flink--Data Source 介绍

Data Source 简介 Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集、历史的数据集;也可以用来做流处理,即实时的处理些实时数据流,实时的产生数据流结果,只要数据源源不断的过来&#xff…

「Verilog学习笔记」多功能数据处理器

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点,刷题网站用的是牛客网 分析 注意题目要求输入信号为有符号数,另外输出信号可能是输入信号的和,所以需要拓展一位,防止溢出。 timescale 1ns/1ns module data_…

Java 正则表达式分组匹配

前几篇文章都是简单判断是否满足匹配规则,当需要提取匹配结果时就用到分组匹配。 分组匹配 可以判断是否满足正则表达式,然后提取出子串。 有些时候电话号码是以 123-4567-8899 这样显示的,我们要判断某个字符串是这种形式的并分别提起三段…

Redis 扩展 RedisBloom 插件,解决缓存击穿、穿透

文章目录 一、概述二、编译准备2.1 升级 make2.2 安装 Python3 三、编译 RedisBloom四、测试 RedisBloom五、应用场景5.1 缓存击穿5.2 缓存穿透5.3 原理总结 六、存在的问题 如果您对Redis的了解不够深入请关注本栏目,本栏目包括Redis安装,Redis配置文件…

两个栈实现队列

要用两个栈实现队列,就需要了解栈和队列的特性,栈是先进后出,队列是先进先出。基本思路是,把数据先压入栈1中,然后数据在栈1中输出再压入栈2,输出后就能实现队列的先进先出。 package Package;import java.…