大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive

作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、部分代码设计
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

随着通信行业的快速发展和市场竞争的日益激烈,营业厅作为通信公司的重要服务窗口,其服务质量和运营效率直接影响到公司的形象和业绩。为了提高营业厅的运营效能和服务质量,建立一个营业厅营业效能监控平台,对营业厅的各项运营数据进行实时监测和分析,变得至关重要。

当前,一些通信公司门店已经尝试使用一些数据分析和监控工具来监测其营业厅的运营数据。然而,这些工具往往存在一些问题,如:
数据不齐全:现有工具往往只能提供部分营业厅的数据监测和分析,无法覆盖营业厅的所有运营数据。
数据不及时:由于数据采集和处理的制约,现有工具往往无法实时更新数据,使得数据分析的结果无法反映营业厅运营情况。
分析不深入:现有的工具往往只能提供基础的数据统计和分析,而无法进行深入的数据挖掘和趋势预测,从而无法为决策提供有力的支持。
因此,建立一个实时、深入的营业厅营业效能监控平台,仍然具有必要性和现实意义。

本课题的研究目的是建立一个营业厅营业效能监控平台,通过实时采集、处理和分析营业厅的各项运营数据,提供准确、及时的数据支持,以帮助通信公司更好地了解营业厅的运营状况、提高服务质量、优化资源配置。具体来说,本课题将实现以下目标:
实现数据的采集和实时更新,反映所有营业厅的运营状况;
实现数据的处理和分析,提供各种指标的统计和可视化;
实现数据的深入挖掘和趋势预测,为决策提供有力的支持;
提供一个友好的用户界面,方便用户进行数据查询和操作。

本课题的研究意义在于为通信公司提供一种便捷、准确、实时的营业厅营业效能监控平台,从而帮助通信公司更好地了解营业厅的运营状况和服务质量,优化资源配置和提高服务水平。具体来说,本课题的意义包括:
提高服务质量:通过实时监控营业厅的运营数据和服务质量,通信公司可以及时发现并解决存在的问题,提高客户满意度和服务质量。
优化资源配置:通过对营业厅的运营数据进行分析和处理,通信公司可以了解各营业厅的客流量、业务类型、服务需求等情况,从而优化资源配置和服务流程,提高公司的运营效率。
提高决策效率:通过实时数据监测和分析,通信公司可以更加准确地了解市场趋势和消费者需求,从而更加准确地制定营销策略和投资计划,提高决策效率和准确性。
增强竞争力:通过建立便捷的营业厅营业效能监控平台,通信公司可以更好地了解市场趋势和消费者需求,优化资源配置和提高服务水平,从而增强竞争力。同时,这种数据驱动的决策方式也可以提高公司的透明度和诚信度,增强公司的社会责任感和品牌形象。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts、机器学习
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统界面展示

  • 基于大数据的营业厅营业效能监控平台界面展示:
    基于大数据的营业厅营业效能监控平台
    基于大数据的营业厅营业效能监控平台-门店历史受理详情
    基于大数据的营业厅营业效能监控平台-耗时步骤分析
    基于大数据的营业厅营业效能监控平台-门店基本信息
    基于大数据的营业厅营业效能监控平台-门店台席健康度
    基于大数据的营业厅营业效能监控平台-营业员受理详情

四、部分代码设计

  • 大数据项目实战-代码参考:
# 根据区县找出所对应的省份和城市
def cun(address_str):res_dict = {'province': '', 'city': '', 'county': ''}lit = []for k,v in area_data.items():for city_county_dict in v:for x,y in city_county_dict.items():# print(x,y)for j in y:if address_str.find(j) != -1:lit.append({'id': address_str.find(j), 'value': j})elif address_str.find(j) == -1:if address_str.find('河北区') != -1:if address_str.find(j[0:2]) != -1:# print(j)lit.append({'id':address_str.find(j[0:2]),'value':j})elif address_str.find('河北区') == -1:if '河北区' in y:y.remove('河北区')if address_str.find(j[0:2]) != -1:# print(j)lit.append({'id':address_str.find(j[0:2]),'value':j})lit.sort(key=lambda x: x['id'])# print(lit)if lit:for k, v in area_data.items():for city_county_dict in v:for x, y in city_county_dict.items():for j in y:if lit[0]['value'].find(j) != -1:res_dict['province'] = kres_dict['city'] = xres_dict['county'] = jreturn res_dictreturn res_dictdef create_main(address_str):address_str = address_str.replace('汽车', '')if address_str.find('乌鲁木齐县') != -1 and address_str.find('乌鲁木齐') != -1:return ['新疆', '乌鲁木齐', '乌鲁木齐县']if address_str.find('乌鲁木齐') != -1:return ['新疆', '乌鲁木齐', '']if address_str.find('沙市区') != -1:return ['湖北', '荆州', '沙市区']if address_str.find('灌南县') != -1:return ['江苏', '连云港', '灌南县']if address_str.find('张家港') != -1:return ['江苏', '苏州', '张家港市']if address_str.find('邯郸县') != -1:return ['河北', '邯郸', '邯郸县']if address_str.find('朝阳区') != -1:return ['北京', '北京', '朝阳区']if address_str.find('南昌县') != -1:return ['江西', '南昌', '南昌县']if address_str.find('芜湖县') != -1:return ['安徽', '芜湖', '芜湖县']if address_str.find('让胡路区') != -1:return ['黑龙江', '大庆', '让胡路区']if address_str.find('瑞安市') != -1:return ['浙江', '温州', '瑞安市']if address_str.find('丰泽区') != -1:return ['福建', '泉州', '丰泽区']if address_str.find('平阳县') != -1:return ['浙江', '温州', '平阳县']if address_str.find('乐清市') != -1:return ['浙江', '温州', '乐清市']if address_str.find('余姚市') != -1:return ['浙江', '宁波', '余姚市']if address_str.find('慈溪市') != -1:return ['浙江', '宁波', '慈溪市']if address_str.find('宁海县') != -1:return ['浙江', '宁波', '宁海县']if address_str.find('镇海区') != -1:return ['浙江', '宁波', '镇海区']if address_str.find('黄岩区') != -1:return ['浙江', '台州', '黄岩区']if address_str.find('头陀镇') != -1:return ['浙江', '台州', '头陀镇']if address_str.find('椒江区') != -1:return ['浙江', '台州', '椒江区']if address_str.find('义乌市') != -1:return ['浙江', '金华', '义乌']if address_str.find('温岭市') != -1:return ['浙江', '台州', '温岭']if address_str.find('玉环') != -1:return ['浙江', '台州', '玉环县']if address_str.find('玉环') != -1:return ['浙江', '台州', '玉环县']if address_str.find('路桥') != -1:return ['浙江', '台州', '路桥区']if address_str.find('路南区') == -1 and address_str.find('唐山') == -1:if address_str.rfind('路') != -1:address_str = address_str.replace(address_str[address_str.rfind('路') - 2:], '')if address_str.rfind('岸') != -1:address_str = address_str.replace(address_str[address_str.rfind('岸') - 2:], '')if address_str.find('道里区') == -1:if address_str.rfind('道') != -1:address_str = address_str.replace(address_str[address_str.rfind('道') - 3:], '')a = pro_cty_cun(address_str)b = cty_cun(address_str)c = cun(address_str)# print(a)# print(b)# print(c)if a['province'] != '' and c['province'] != '' and a['city'] == '' and b['city'] == '' and a['province'] == c['province']:# print(1)return list(c.values())if a['province'] != '' and b['province'] != '' and a['province'] == b['province'] and a['city'] != '' and b['city'] != '' and a['city'] == b['city'] and b['county'] != a['county']:return list(b.values())if a['province'] != '':return list(a.values())if b['province'] != '':return list(b.values())if c['province'] != '':return list(c.values())else:return ['', '', '']print(create_main('临沂颐高上海街'))#调用函数total_value=[]
for value in df['位置'].tolist():total_value.append(create_main(value))split_data= pd.DataFrame(total_value,columns=['省','市','区H'])#拼接
df_new_data= pd.concat([df,split_data],axis=1)
df_new_data.loc[:,'位置2']=df_new_data['省']+df_new_data['市']+df_new_data['区H']
ad_split=cpca.transform(df_new_data['位置2'])[['省','市','区','adcode']]df_new_data=df_new_data[['省级', '城市' , '已有经销商名称','已有门店名称','数量',  '区H', '位置2']].copy()
df_gyh=pd.concat([df_new_data,ad_split],axis=1)df_gyh.columns=['省份', '城市','经销商名称', '门店名称','门店数量', '区H','位置', '省', '市', '区', 'adcode']
# df_gyh.to_excel('D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后门店(高英华).xlsx')df_1=pd.read_excel(r'D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后门店(高英华).xlsx',converters={'Unnamed: 0':str,'adcode':str})
df_sh=pd.read_excel(r'D:\门店数据清洗\省份.xls')df_1=df_1[['Unnamed: 0','经销商名称','门店名称','门店数量','区H', '位置', '省', '市', '区', 'adcode']].copy()
df_1_sh=pd.merge(df_1,df_sh,left_on='省',right_on='省份',how='left')df_1_sh.loc[:,'门店id']=df_1_sh['省编码']+'-c'+df_1_sh['adcode']+'-'+df_1_sh['Unnamed: 0']new_columns=df_1_sh.columns.tolist()
new_columns1=['门店id', '省','市','区H','经销商名称','门店名称','位置','门店数量', '省编码', 'adcode', '省份','区', 'Unnamed: 0'
#               ,'门店名称1']#调整各列的位置
df_1_sh=df_1_sh.reindex(columns=new_columns1).copy()
df_1_sh=df_1_sh[['门店id', '省', '市', '区','经销商名称', '门店名称', '位置', '门店数量', '省编码',  'adcode']]#确认门店id是否唯一
print(df_1_sh[df_1_sh['门店id'] .isnull()])
# df_1_sh.to_excel('D:\门店数据清洗\门店明细统计(含地址)\门店明细统计(含地址)\门店明细统计(含地址)\清洗后数据\清洗后加门店id(高英华).xlsx',index=False)

五、论文参考

  • 计算机毕业设计选题推荐-基于大数据的营业厅营业效能监控平台-论文参考:
    计算机毕业设计选题推荐-基于大数据的营业厅营业效能监控平台-论文参考

六、系统视频

基于大数据的营业厅营业效能监控平台-项目视频:

大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop

结语

大数据毕业设计选题推荐-营业厅营业效能监控平台-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/164234.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新 vie-vite框架下 jtopo安装使用

官方地址 官方源码 安装下载 1.官方好像都没有给git地址,尝试npm安装报错 2.找到1.0.5之前的版本npm i jtopo2,安装成功后使用报错,应该是版本冲突了 1.本地引入, 点击官方源码下载,需要jtopo_npm文件 2.引入到本…

如何选择SVM中最佳的【核函数】

参数“kernel"在sklearn中可选以下几种 选项: 接下来我们 就通过一个例子,来探索一下不同数据集上核函数的表现。我们现在有一系列线性或非线性可分的数据,我们希望通过绘制SVC在不同核函数下的决策边界并计算SVC在不同核函数下分类准确…

python使用pysqlcipher3对sqlite数据库进行加密

python对很多项目都需要对sqlite数据库的数据进行加密,最流行的加密方式是使用pysqlcipher3,当前使用的python版本为3.7,本博文是直接使用pysqlcipher3在项目上的应用,使用的是已编译好的pysqlcipher3包,如果你需要pys…

【pyspider】爬取ajax请求数据(post),如何处理python2字典的unicode编码字段?

情景:传统的爬虫只需要设置fetch_typejs即可,因为可以获取到整个页面。但是现在ajax应用越来越广泛,所以有的网页不能用此种爬虫类型来获取页面的数据,只能用slef.crawl()来发起http请求来抓取数据。 直接上例子: 可以…

动作捕捉系统通过SDK与LabVIEW通信

运动分析、VR、机器人等应用中常使用LabVIEW对动作捕捉数据进行实时解算。NOKOV度量动作捕捉系统支持通过SDK与LabVIEW进行通信,将动作数据传入LabVIEW。 一、软件设置 1、形影软件设置 1、将模式切换到后处理模式 2、加载一个刚体数据 3、打开软件设置 4、选择网…

学习笔记:利用CANOE Panel和CAPL脚本模拟主节点发送LIN通信指令

前一篇文章已经对CANOE如何模拟主节点和从节点进行LIN通信做了简单的记录,修改主节点发送的指令需要修改LIN ISC模块里的Frames帧对应的signal。这样改起来比较麻烦且不直观,幸好CANOE提供了Panel designer这样的工具,我们可以利用它设计自己…

数组的存储结构、特殊矩阵和稀疏矩阵的压缩存储

数组的存储结构、特殊矩阵和稀疏矩阵的压缩存储 1.数组的存储结构、特殊矩阵、稀疏矩阵的压缩存储1.1 数组的存储结构1.1.1 一维数组的存储结构关系式1.1.2 多维数组的存储结构关系式 1.2 特殊矩阵的压缩存储1.2.1 对称矩阵1.2.2 下三角矩阵1.2.3 上三角矩阵1.2.4 三对角矩阵 1…

Window10安装Docker

文章目录 Window10安装Docker前提条件Hyper -VWSL 2.0 安装包下载执行安装包更新 Window10安装Docker 前提条件 Hyper -V 如何启用 WSL 2.0 安装包下载 官网地址 下载后: 执行安装包 wsl --update等得有点久 重新打开 拉取一个helloworld镜像 说明已经…

大数据学习之一文学会Spark【Spark知识点总结】

文章目录 什么是SparkSpark的特点Spark vs HadoopSparkHadoopSpark集群安装部署Spark集群安装部署StandaloneON YARN Spark的工作原理什么是RDDRDD的特点Spark架构相关进程Spark架构原理 Spark实战:单词统计Scala代码开发java代码开发任务提交 Transformation与Acti…

vscode中 vue3+ts 项目的提示失效,volar插件失效问题解决方案

文章目录 前情提要bug回顾解决方案最后 前情提要 说起来很耻辱,从mac环境换到window环境,vscode的配置都是云端更新过来的,应该是一切正常才对,奇怪的是我的项目环境出现问题了,关于组件的ts和追踪都没有效果&#xff…

【JMeter】定时器分类以及场景介绍

1. 定时器分类 固定定时器 作用:请求之间设置等待时间应用场景:查询商品列表后,去查看列表商品详情页。针对商品列表数据量比较大的,响应时间会比较长,就需要设置等待时间然后去查看商详 2.定时器的作用域&#xff1…

【终端目标检测03】nanodet训练自己的数据集、NCNN部署到Android

nanodet训练自己的数据集、NCNN部署到Android 一、介绍二、训练自己的数据集1. 运行环境2. 数据集3. 配置文件4. 训练5. 训练可视化6. 测试 三、部署到android1. 使用官方权重文件部署1.1 下载权重文件1.2 使用Android Studio部署apk 2. 部署自己的模型【暂时存在问题】2.1 生成…