代码随想录算法训练营第四十二天丨 动态规划part05

1049.最后一块石头的重量II

思路

本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了

感觉和昨天讲解的416. 分割等和子集 (opens new window)非常像了。

本题物品的重量为 stones[i],物品的价值也为 stones[i]。

对应着01背包里的物品重量 weight[i]和 物品价值 value[i]。

接下来进行动规五步曲:

  • 确定dp数组以及下标的含义

dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]

可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

  • 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

一些同学可能看到这dp[j - stones[i]] + stones[i]中 又有- stones[i] 又有+stones[i],看着有点晕乎。

大家可以再去看 dp[j]的含义。

  • dp数组如何初始化

既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。

因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 

而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。

当然也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。

我这里就直接用15000了。

接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中 dp[j]才不会初始值所覆盖。

代码为:

int[] dp = new int[target+1];
  • 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

for (int i = 0; i < stones.size(); i++) { // 遍历物品for (int j = target; j >= stones[i]; j--) { // 遍历背包dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);}
}
  • 举例推导dp数组

举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:

1049.最后一块石头的重量II

最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

代码如下:

class Solution {public int lastStoneWeightII(int[] stones) {//确定dp数组及其下标含义//dp数组将石头堆分成两堆,使两堆的int sum = 0;for (int i = 0; i < stones.length; i++) {sum += stones[i];}int target = sum / 2;int[] dp = new int[target+1];for (int i = 0; i < stones.length; i++) {for (int j = target; j >= stones[i]; j--) {dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - 2*dp[target];}
}

494.目标和

思路

这道题目咋眼一看和动态规划背包啥的也没啥关系。

本题要如何使表达式结果为target,

既然为target,那么就一定有 left组合 - right组合 = target。

left + right = sum,而sum是固定的。right = sum - left

公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。

target是固定的,sum是固定的,left就可以求出来。

此时问题就是在集合nums中找出和为left的组合

动态规划

如何转化为01背包问题呢。

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法

这里的x,就是bagSize,也就是我们后面要求的背包容量。

大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。

这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:

(C++代码中,输入的S 就是题目描述的 target)
if ((S + sum) % 2 == 1) return 0; // 此时没有方案

同时如果 S的绝对值已经大于sum,那么也是没有方案的。

(C++代码中,输入的S 就是题目描述的 target)
if (abs(S) > sum) return 0; // 此时没有方案

再回归到01背包问题,为什么是01背包呢?

因为每个物品(题目中的1)只用一次!

这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。

本题则是装满有几种方法。其实这就是一个组合问题了。

  • 确定dp数组以及下标的含义

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。

下面都是统一使用一维数组进行讲解, 二维降为一维(滚动数组),其实就是上一层拷贝下来,这个我在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)也有介绍。

  • 确定递推公式

有哪些来源可以推出dp[j]呢?

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

  • 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
  • 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
  • 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
  • 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
  • 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包

那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]

这个公式在后面在讲解背包解决排列组合问题的时候还会用到!

  • dp数组如何初始化

从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。

这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。

其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。

如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。

所以本题我们应该初始化 dp[0] 为 1。

可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。

其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。

dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。

  • 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

  • 举例推导dp数组

输入:nums: [1, 1, 1, 1, 1], S: 3

bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:

代码如下:

class Solution {public int findTargetSumWays(int[] nums, int target) {int sum = 0;for (int i = 0; i < nums.length; i++) sum += nums[i];//如果target过大 sum将无法满足if ( target < 0 && sum < -target) return 0;if ((target + sum) % 2 != 0) return 0;int size = (target + sum) / 2;if(size < 0) size = -size;int[] dp = new int[size + 1];dp[0] = 1;for (int i = 0; i < nums.length; i++) {for (int j = size; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[size];}
}

474.一和零

思路

这道题目,还是比较难的,也有点像程序员自己给自己出个脑筋急转弯,程序员何苦为难程序员呢。

本题并不是多重背包,再来看一下这个图,捋清几种背包的关系

416.分割等和子集1

多重背包是每个物品,数量不同的情况。

本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包

理解成多重背包的主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。

但本题其实是01背包问题!

只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

开始动规五部曲:

  • 确定dp数组(dp table)以及下标的含义

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]

  • 确定递推公式

dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

  • dp数组如何初始化

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中已经讲解了,01背包的dp数组初始化为0就可以。

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

  • 确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

代码如下:

for (String str : strs) {// 遍历物品//0 的个数int x = 0;//1 的个数int y = 0;for (char c : str.toCharArray()) {if (c=='0'){x++;}else if (c=='1'){y++;}}for (int i = m; i >= x; i--) {// 遍历背包容量且从后向前遍历!for (int j = n; j >= y; j--) {dp[i][j] = Math.max(dp[i][j],dp[i-x][j-y]+1);}}
}

那个遍历背包容量的两层for循环先后循序有没有什么讲究?

没讲究,都是物品重量的一个维度,先遍历哪个都行!

  • 举例推导dp数组

以输入:["10","0001","111001","1","0"],m = 3,n = 3为例

最后dp数组的状态如下所示:

474.一和零

代码如下:

class Solution {public int findMaxForm(String[] strs, int m, int n) {int[][] dp = new int[m+1][n+1];for (String str : strs) {// 遍历物品//0 的个数int x = 0;//1 的个数int y = 0;for (char c : str.toCharArray()) {if (c=='0'){x++;}else if (c=='1'){y++;}}for (int i = m; i >= x; i--) {// 遍历背包容量且从后向前遍历!for (int j = n; j >= y; j--) {dp[i][j] = Math.max(dp[i][j],dp[i-x][j-y]+1);}}}return dp[m][n];}
}

动态规划真想不出来,感觉是强行将题目解释成01背包问题的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/164933.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

地理信息系统原理-空间数据结构(7)

​四叉树编码 1.四叉树编码定义 四叉树数据结构是一种对栅格数据的压缩编码方法&#xff0c;其基本思想是将一幅栅格数据层或图像等分为四部分&#xff0c;逐块检查其格网属性值&#xff08;或灰度&#xff09;&#xff1b;如果某个子区的所有格网值都具有相同的值&#xff0…

linux下IO模及其特点及select

ftp实现 模拟FTP核心原理&#xff1a;客户端连接服务器后&#xff0c;向服务器发送一个文件。文件名可以通过参数指定&#xff0c;服务器端接收客户端传来的文件&#xff08;文件名随意&#xff09;&#xff0c;如果文件不存在自动创建文件&#xff0c;如果文件存在&#xff0c…

鸿蒙原生应用开发-DevEco Studio超级终端模拟器的使用

一、了解超级终端模拟器支持的设备情况 该特性在DevEco Studio V2.1 Release及更高版本中支持。 目前超级终端模拟器支持“PhonePhone”、“PhoneTablet”和“PhoneTV”的设备组网方式&#xff0c;开发者可以使用该超级终端模拟器来调测具备跨设备特性的应用/服务&#xff0c;如…

LEEDCODE 283移动零

class Solution { public:void moveZeroes(vector<int>& nums) {if(nums.size() > 1) {vector<int> a;// 找到0的位置int i 0;int right nums.size() - 1;while(i < right){if(nums[i] 0){for(int j i; j< right; j){swap(nums[j], nums[j1]);}ri…

接口测试及接口测试工具

首先&#xff0c;什么是接口呢&#xff1f; 接口一般来说有两种&#xff0c;一种是程序内部的接口&#xff0c;一种是系统对外的接口。 系统对外的接口&#xff1a;比如你要从别的网站或服务器上获取资源或信息&#xff0c;别人肯定不会把数据库共享给你&#xff0c;他只能给你…

于道 - 前端项目启动步骤参考

1. 安装 启动过程有9个步骤&#xff1a; 1.1 安装 Node JS , V18版本的 &#xff08;安装步骤省略&#xff09; 1.2 安装 npm install -g yarn &#xff0c;node JS里边好像自带npm &#xff0c;通过npm的命令安装 yarn 1.3 切换到项目中去安装&#xff0c;npm install &a…

excel中超级表和普通表的相互转换

1、普通表转换为超级表 选中表内任一单元格&#xff0c;然后按CtrlT&#xff0c;确认即可。 2、超级表转换为普通表 选中超级表内任一单元格&#xff0c;右键&#xff0c;表格&#xff0c;转换为区域&#xff0c;确定即可。 这时虽然已经变成了普通表&#xff0c;但样式没有…

程序员想要网上接单?那这几点注意事项你可要记好了!不看后悔!

相信网上接单对于程序员来说并不陌生&#xff0c;甚至有些程序员还以此为主业&#xff0c;靠网上接单来增加收入&#xff0c;维持生计&#xff0c;但是你真的确定你懂网上接单的套路吗&#xff1f;你知道网上接单的注意事项吗&#xff1f;这期文章就来盘点一下&#xff0c;无论…

智能井盖传感器功能,万宾科技产品介绍

在国家治理方面&#xff0c;对社会的治理是一个重要的领域&#xff0c;一定要在推进社会治理现代化过程中提高市政府的管理和工作能力&#xff0c;推动社会拥有稳定有序的发展。在管理过程中对全市井盖进行统一化管理&#xff0c;可能是市政府比较头疼的难题&#xff0c;如果想…

学习视频剪辑:巧妙运用中画、底画,制作画中画,提升视频效果

随着数字媒体的普及&#xff0c;视频剪辑已经成为一项重要的技能。在视频剪辑过程中&#xff0c;制作画中画可以显著提升视频效果、信息传达和吸引力。本文讲解云炫AI智剪如何巧妙运用中画、底画批量制作画中画来提升视频剪辑水平&#xff0c;提高剪辑效率。 操作1、先执行云…

时间序列预测中的数据分析->周期性、相关性、滞后性、趋势性、离群值等特性的分析方法

本文介绍 本篇文章给大家介绍的是&#xff0c;当我们在进行有关时间序列相关的工作或者实验时&#xff0c;需要对数据进行的一些数据分析操作(包括周期性、相关性、滞后性、趋势性、离群值等等分析)的方法。在本篇文章中会以实战的形式进行讲解&#xff0c;同时提供运行代码和…

falsk框架中安装flask-mysqldb报错解决方案

错误示例 我的是py37版本&#xff0c;无法直接安装flask-mysqldb pip install flask-mysqldb报错如下 解决方案 先去第三方库 https://www.lfd.uci.edu/~gohlke/pythonlibs/#mysqlclient 下载mysqlclient 这个是我的版本 mysqlclient-1.4.6-cp37-cp37m-win_amd64.whl 下…