【数据结构】二叉树顺序存储:堆详解!(图解+源码)

个人头像
🎥 屿小夏 : 个人主页
🔥个人专栏 : 数据结构解析
🌄 莫道桑榆晚,为霞尚满天!

文章目录

  • 🌤️前言
  • 🌤️堆的理论
    • ☁️二叉树的顺序存储
    • ☁️堆的概念
  • 🌤️堆的实现逻辑
    • ☁️堆向下调整算法
    • ☁️建堆
    • ☁️建堆时间复杂度
    • ☁️堆的插入
    • ☁️堆的删除
  • 🌤️堆的代码是实现
    • ☁️堆的结构体
    • ☁️堆的初始化
    • ☁️堆的销毁
    • ☁️堆的插入
    • ☁️堆的删除
    • ☁️取堆顶数据
    • ☁️堆的数据个数
    • ☁️堆的判空
  • 🌤️堆特性总结
  • 🌤️全篇总结

在这里插入图片描述

🌤️前言

堆是一种基本而强大的数据结构。本文将深入探讨堆的概念、原理以及实现。

🌤️堆的理论

☁️二叉树的顺序存储

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

在这里插入图片描述

☁️堆的概念

在这里插入图片描述

堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

在这里插入图片描述

🌤️堆的实现逻辑

☁️堆向下调整算法

一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整
成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

int array[] = {27,15,19,18,28,34,65,49,25,37};

在这里插入图片描述

☁️建堆

给定一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,这个时候就需要我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆(向下调整)。

int a[] = {1,5,3,8,7,6};

在这里插入图片描述

☁️建堆时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果)

在这里插入图片描述

根据上图可以推算出: 建堆的时间复杂度为O(N)。

☁️堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。

在这里插入图片描述

☁️堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

在这里插入图片描述

🌤️堆的代码是实现

☁️堆的结构体

typedef int HeapDataType;typedef struct Heap
{HeapDataType* a;int size;  //有效元素int cpciti; //容量
}HP;
  • HeapDataType 定义了堆中元素的数据类型,这里是整数。
  • struct Heap 定义了一个包含堆数据的结构体,包括一个指向堆数组的指针 ,堆的有效元素个数 ,以及堆的容量 。

☁️堆的初始化

void HeapInit(HP* hp)
{assert(hp);hp->a = NULL;hp->size = hp->cpciti = 0;
}

首先使用 断言来确保传入的指针 不为空。然后,将堆数组指针设置为 NULL,将堆的有效元素个数和容量都初始化为 0。

☁️堆的销毁

void HeapDestroy(HP* hp)
{assert(hp);free(hp->a);hp->a = NULL;hp->size = hp->cpciti = 0;
}

使用 断言确保传入的指针 不为空。然后,使用函数释放堆数组分配的内存,并将指针设置为 NULL。最后,将堆的有效元素个数和容量都设置为 0。

☁️堆的插入

void AdjustUp(HeapDataType* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (parent - 1) / 2;}else{break;}}
}
void HeapPush(HP* hp, HeapDataType x)
{assert(hp);//if (hp->size == hp->cpciti){int newCapacity = hp->cpciti == 0 ? 4 : hp->cpciti * 2;HeapDataType* tmp = (HeapDataType*)realloc(hp->a, sizeof(HeapDataType) * newCapacity);if (tmp == NULL){perror("realloc fail");exit(-1);}hp->a = tmp;hp->cpciti = newCapacity;}hp->a[hp->size] = x;hp->size++;AdjustUp(hp->a, hp->size-1);
}

AdjustUp用于将堆的最后一个节点(即插入的新节点)向上调整,使得以新节点为叶子节点的子树仍然满足堆的性质。具体步骤如下:

  1. 初始化parent为(child - 1) / 2,即新节点的父节点。
  2. 如果child大于0(即child不是根节点),则执行以下操作:
    • 如果child节点的值小于parent节点的值,则交换child和parent节点的值,并更新child为parent,parent为(child - 1) / 2。
    • 否则,跳出循环。
  3. 调整结束。

HeapPush用于向堆中插入一个新的元素。具体步骤如下:

  1. 检查堆的大小是否达到了容量上限,如果是,则进行扩容操作。
  2. 将新元素x放入堆的最后一个位置。
  3. 堆的大小加1。
  4. 调用AdjustUp函数,将新插入的元素向上调整。

☁️堆的删除

void AdjustDown(HeapDataType* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
void HeapPop(HP* hp)
{assert(hp);assert(hp->size > 0);Swap(&hp->a[0], &hp->a[hp->size - 1]);hp->size--;AdjustDown(hp->a,hp->size,0);
}

AdjustDown用于将堆的根节点向下调整,使得以根节点为根的子树仍然满足堆的性质。具体步骤如下:

  1. 初始化child为parent的左孩子节点。
  2. 如果child小于n(即child在数组范围内),则执行以下操作:
    • 如果child+1也小于n且右孩子节点的值小于左孩子节点的值,则将child更新为右孩子节点。
    • 如果child节点的值小于parent节点的值,则交换child和parent节点的值,并更新parent为child,child为parent的左孩子节点。
    • 否则,跳出循环。
  3. 调整结束。

HeapPop用于删除堆的根节点。具体步骤如下:

  1. 交换根节点和最后一个节点的值。
  2. 将堆的大小减1。
  3. 调用AdjustDown函数,将根节点向下调整。

☁️取堆顶数据

HeapDataType HeapTop(HP* hp)
{assert(hp);assert(hp->size > 0);return hp->a[0];
}

断言来确保传入的指针 是非空的(不为 NULL),以及堆的大小大于0。如果这些条件不满足,程序会终止执行。然后,返回堆的顶部元素,也就是堆数组中的第一个元素。

☁️堆的数据个数

int HeapSize(HP* hp)
{return hp->size;
}

size即堆的大小,表示堆中当前包含的元素个数。

☁️堆的判空

int HeapEmpty(HP* hp)
{assert(hp);return hp->size == 0;
}

断言确保传入的指针不为空,检查堆的大小是否等于0。如果堆的大小为0,函数返回1(表示堆为空),否则返回0(表示堆不为空)。

🌤️堆特性总结

  1. 堆是一棵完全二叉树,即除了最后一层外,其他层都是满的,最后一层从左到右填满。
  2. 堆分为大根堆和小根堆两种,大根堆中每个节点的值都大于其子节点的值,小根堆中每个节点的值都小于其子节点的值。
  3. 堆的根节点是堆中的最小(或最大)元素。
  4. 堆中的任意节点的值都小于(或大于)其子节点的值。
  5. 堆中的元素是按照层序遍历的顺序存储在数组中的,可以用数组来实现堆。
  6. 堆的插入和删除操作分别为向上调整(AdjustUp)和向下调整(AdjustDown),保证插入和删除后仍然满足堆的性质。
  7. 堆的时间复杂度为O(logN),其中N为堆中元素的个数。

🌤️全篇总结

堆作为数据结构中的重要部分,展现了在多种算法和应用中的价值。掌握堆的知识会对你以后解决各种问题和优化性能提供重要帮助。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/166617.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux权限:系统中的数字锁与安全之门】

1.Linux下的用户 Linux下有两种用户&#xff1a;超级用户&#xff08;root&#xff09;、普通用户。 超级用户&#xff1a;可以再linux系统下做任何事情&#xff0c;不受限制普通用户&#xff1a;在linux下做有限的事情。超级用户的命令提示符是“#”&#xff0c;普通用户的命令…

71 内网安全-域横向网络传输应用层隧道技术

目录 必备知识点&#xff1a;1.代理和隧道技术区别?2.隧道技术为了解决什么?3.隧道技术前期的必备条件? 演示案例:网络传输应用层检测连通性-检测网络层ICMP隧道Ptunnel使用-检测利用传输层转发隧道Portmap使用-检测,利用传输层转发隧道Netcat使用-检测,利用,功能应用层DNS隧…

uniapp H5预览PDF支持手势缩放、分页、添加水印、懒加载、PDF下载

效果预览 项目说明 uniapp vue2 node&#xff1a;v14.18.3 npm&#xff1a; 6.14.15 安装pdfh5.js插件 pdfh5 - npm (npmjs.com)pdfh5.js 基于pdf.js和jQuery pdfh5 - npm (npmjs.com) npm install pdfh5 由于我安装最新的pdfh5.js后运行时报错 所以我选择降低版本,可能是node…

解决Jenkins执行git脚本时报错:No such device or address问题

问题现象&#xff1a; Jenkins执行BeanShell脚本时&#xff0c;报错&#xff1a;jenkins fatal: could not read Username for http://112.11.120.1: No such device or address 解决方案&#xff1a; 解决服务器拉取git仓库的代码权限&#xff0c;使用高级子模块克隆功能。…

vioovi的ECRS工时分析软件:食品加工行业的生产效率提升利器

在食品加工行业&#xff0c;提高生产效率、降低成本、优化资源配置是至关重要的。随着科技的不断发展&#xff0c;越来越多的企业开始借助先进的软件工具来助力生产管理。本文将介绍一款备受食品加工企业青睐的工业工程软件——vioovi的ECRS工时分析软件&#xff0c;并探讨其如…

【JavaEESpring】Spring Web MVC⼊⻔

Spring Web MVC 1. 什么是 Spring Web MVC1.1 什么是 MVC ?1.2 是什么 Spring MVC? 2. 学习 Spring MVC2.1 建立连接2.2 请求2.3 响应 3. 相关代码链接 1. 什么是 Spring Web MVC 官⽅对于 Spring MVC 的描述是这样的&#xff1a; 1.1 什么是 MVC ? MVC 是 Model View C…

【网络编程】传输层——TCP协议

文章目录 TCP协议TCP协议格式窗口大小六个标志位确认应答机制超时重传机制连接管理机制三次握手四次挥手 流量控制滑动窗口拥塞控制延迟应答捎带应答面向字节流粘包问题TCP异常情况TCP小结基于TCP的应用层协议TCP与UDP的对比 TCP相关实验CLOSE_WAIT状态实验TIME_WAIT状态实验TI…

ubuntu 火焰图脚本

环境ubuntu1804 x86_64 #!/bin/bash if [ "$2_" "_" ];thenecho "usage ./fire.sh oncpu/offcpu pid"exit fiif [ "$1_" "oncpu_" ];thensudo perf record -F 99 -p $2 -g -- sleep 10syncsudo perf script > out.pe…

Maven中的继承与聚合

一&#xff0c;继承 前面我们将项目拆分成各个小模块&#xff0c;但是每个小模块中有很多相同的依赖于是我们创建一个父工程将模块中相同的依赖定义在父工程中&#xff0c;然后子工程继承父工程Maven作用&#xff1a;简化依赖配置&#xff0c;统一依赖管理,可以实现多重继承像J…

竞赛选题 深度学习猫狗分类 - python opencv cnn

文章目录 0 前言1 课题背景2 使用CNN进行猫狗分类3 数据集处理4 神经网络的编写5 Tensorflow计算图的构建6 模型的训练和测试7 预测效果8 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习猫狗分类 ** 该项目较为新颖&a…

Android Camera App启动流程解析

前言&#xff1a;做了7年的camera app开发&#xff0c;给自己一个总结&#xff0c;算是对camera的一次告白吧。Camera被大家誉为手机的眼睛&#xff0c;是现在各大手机厂商的卖点&#xff0c;也是各大厂商重点发力的地方。Camera的重要性我就不在这里赘述了&#xff0c;让我们进…

物联网中的毫米波雷达:连接未来的智能设备

随着物联网&#xff08;IoT&#xff09;技术的飞速发展&#xff0c;连接设备的方式和效能变得越来越重要。毫米波雷达技术作为一种先进的感知技术&#xff0c;正在为物联网设备的连接和智能化提供全新的可能性。本文将深入探讨毫米波雷达在物联网中的应用&#xff0c;以及它是如…