【操作系统内核】线程

【操作系统内核】线程

为什么需要线程

比如我要做一个视频播放器,就需要实现三个功能:

① 从磁盘读取视频数据

② 对读取到的视频数据进行解码

③ 对解码的数据进行播放

  1. 如果串行执行(通过一个进程来执行):
20230805151957

那么播放一会就需要等待数据从磁盘加载(读磁盘很慢,会使得这个进程阻塞,CPU空置),然后通过CPU解码,就会一卡一卡的

  1. 如果三个进程来执行,分别负责IO的读写、CPU解码以及播放

进程1读磁盘内容,然后传递给进程2解码,再传递给进程3播放,这样就产生了两个问题:

  • 创建了三个进程,实现一个简单的功能却耗费过多的系统资源
  • 进程间的内存空间不一致,数据时独立,进程之间传递数据,需要操作系统协调(频繁陷入内核)完成,效率低

线程解决进程开销大的问题

① 线程直接共享进程的所有资源 (比如 mm_struct),所以线程就变轻了,创建线程比创建进程要快到 10 ~ 100 倍

② 线程之间共享相同的地址空间 (mm_struct),这样利于线程之间数据高效的传输

③ 可以在一个进程中创建多个线程,实现程序的并发执行

什么是线程:进程中的一条执行流(函数调用链),用于执行不同路径的代码指令,每个进程一开始都有一个主线程

20230805155929

因此,进程可视为由两部分组成:资源平台(地址空间、磁盘、网络资源等)、线程

线程可访问的三类数据

线程共享mm_struct,所以其执行的代码指令是存放在进程地址空间的代码段中

  1. 线程栈

前文说了线程就是一条函数调用链,所以每个线程需要有自己私有的线程栈,存放在当前进程的堆中

而主线程(如main函数)的栈则使用进程的栈

20230805160700

线程栈从高地址向低地址生长

  1. 全局变量(读/写数据段)

  2. 线程私有变量

线程创建代码实例 pthread_create():

20230805160859

线程私有数据设置:

  • 创建一个私有数据key:pthread_key_create(“key”)
  • 设置私有数据:线程 1:pthread_setspecific(“key”, 22)
  • 获取私有数据:线程 1:pthread_getspecific(“key”)
20230805161312

pthread_create详细过程

由于一个进程会有多个线程栈,可以用两个链表来管理这些线程栈:

  • stack_used: 还未退出的线程的线程栈
  • stack_cache: 退出的线程的线程栈,缓存在堆中,下次其他线程启动时直接可以用

pthread创建线程是由内核态和用户态合作实现的,也就是先在用户态创建一个线程(pthread实例),然后在切换到内核态再创建一个线程(task_struct实例):

用户态(创建一个用户态的线程):

  • 调用pthread_create()
    • 根据设置栈的大小,从stack_cache中找到相应大小的线程栈;如果没有,申请堆空间创建线程栈
    • 创建pthread实例(包含了线程私有数据、栈大小、入口函数等),将之放在线程栈栈底位置
  • 调用create_thread()
    • clone()系统调用:将子线程要执行的函数代码起始指令位置、参数写入寄存器(很重要) => 到此为止都是主线程在执行

内核态(创建一个内核态的线程管理用户态的线程):

  • 将主线程的寄存器信息保存到主线程内核栈中

  • 调用do_fork()(创建进程也是用的do_fork(),所以进程线程的创建都差不太多)

    • 创建task_struct以及对应的内核栈

    • 创建进程时,需要复制复制父进程的实例,但线程时资源共享的,不需要复制主线程的实例,直接将线程task_struct的实例指针指向进程的实例指针即可

      20230805163821
  • 维护线程的亲缘关系,主要是维护线程和所属进程的关系

    • 进程的pid等于其tgid,其中tgid表示所属进程的id,据此操作系统可区分一个task是进程还是线程
    • 另外group_leader表示task所属的进程组
  • 将task_stuct加入链表队列

在内核的角度,线程和进程的区别并不大,只是进程需要多一份资源管理

Tip:

  • pthread创建用户线程需要内存创建用户态线程栈,内核创建内核线程需要内存分配(slab分配器)创建内核态线程栈,所以线程的数量不是无限的,会耗尽内存
  • 不管是创建用户态的线程,还是内核态的线程,开销都很小,消耗性能的动作主要是系统调用,会发生CPU上下文切换

所以,为减少CPU的上下文切换,可以建立线程池,当线程执行完后,把线程还给线程池(在用户态阻塞),而非操作系统,后续再重用这个线程,同时,设置最大线程数量,防止内存不足

主线程的CPU上下文恢复

  1. 线程创建完成后,将从主线程的内核栈获取CPU上下文切换到用户态,对比进程创建完成后切换到内核态,此时:

用户态的栈就是父进程的栈,栈顶指针也指向父进程的栈,指令指针也是指向父进程的代码

那么切回到用户态将会进入主线程

  1. 但clone()这个系统调用不一样,它在进入内核态之前,就把要执行的函数代码起始地址(也就是入口函数的地址)写入寄存器,进入内核后,存入内核栈的自然是子线程的下一条指令,此时:

用户态的线程栈就是创建线程A的栈,栈顶指针也指向线程A的栈,指令指针也是指向线程A的代码

然后执行start_tread(),执行线程函数

  1. 那么问题又来了,子线程倒是能顺利执行,那主线程怎么办,主线程的CPU上下文都没了:

但其实在内核拿到子线程CPU上下文,准备返回用户态的那一刻,主线程和子线程进行了一次线程切换参考链接,主线程的CPU上下文信息写入了其内核栈,等下次调度主线程时,就可以顺利运行了

用户级线程和内核级线程

PCB与TCB:

操作系统每创建一个进程,都会在内核态创建一个进程管理器PCB: Process Control Block,存入进程表

操作系统每创建一个线程,都会创建一个线程管理器TCB: Thread Control Block(如果是创建用户级线程,则TCB必须存放在用户态),存入线程表

用户级线程

用户级线程:由一些应用程序中的线程库来实现,应用程序可以调用线程库的 API 来完成线程的创建、线程的结束等操作

20230805173518

用户级线程优点:

  • 快,线程的创建、销毁、切换都非常快,不需要陷入内核态
  • 可以自定义调度算法,比较灵活

缺点:

  • 一个线程不让出CPU,其他的线程永远执行不到了,因此只有线程主动让出cpu,线程库才有切换线程的权力(如果有内核管理的话,会进行时钟中断)
  • 如果一个线程被阻塞,那么这个线程所有的线程都会被阻塞。
    • 比如我一个进程中的一个子线程A需要调用系统资源,则需要陷入内核找到对应的PCB去访问资源,这个过程中,子线程A被阻塞,其他线程也拿不到CPU的执行权,就整个进程都阻塞了
  • 操作系统看不到线程,只能以进程的视角调用,很可能分配的执行时间太少

内核级线程

内核级线程:在内核空间实现的线程,由操作系统管理的线程;内核级线程管理的所有工作都是由操作系统内核完成,比如内核线程的创建、结束、是否占用 CPU 等都是由操作系统内核来管理。

20230805180142

在支持内核线程的操作系统中,由内核来维护进程和线程的上下文信息 (PCB 和 TCB),一个进程的 PCB 会管理这个进程中所有线程的 TCB,当一个线程阻塞,那么内核可以选择另一个线程继续运行。=> 比如Linux

在Linux中,pthread_create会创建一个用户级线程 + 一个内核级线程,pthread_create创建一个TCB,内核会创建一个内核级线程(task_struct)来管理这个用户态线程

Tip: 这里的内核级线程也叫轻量级进程LWP

内核级线程的优点:

  • 内核级线程的创建、终止和切换都是由内核来完成的,所以应用程序如果想用内核级线程的话,需要通过系统调用来完成内核级线程的创建、终止和切换,这里会涉及到用户态和内核态的转换,因此相对于前面用户级线程,系统开销较大

缺点:

  • 在一个进程中,如果某个内核级线程因为发起系统调用而被阻塞,并不会影响其他内核线程的运行。因为内核级线程是被操作系统管理,受操作系统调度的

  • 因为内核级线程是调度单位,所以操作系统将整个时间片是分配给线程的,多线程的进程获得更多的 CPU 时间

用户级线程和内核级线程的关系

不管怎样,线程的实现都需要用户态和内核态的相互配合,因此产生了如下几种关系:

  1. 用户级线程 to 内核级线程: n to 1

线程的TCB存放在用户态,通过一个task_struct访问系统资源,也就是用户级线程,这种线程模式线程切换快,开销小

20230805181703
  1. 用户级线程 to 内核级线程: 1 to 1

线程的TCB存放在内核态,也就是内核态线程,如上文讲的pthread, 这种线程模式并发能力强

20230805182642
  1. 用户级线程 to 内核级线程: m to n

比如Go中的协程,需要根据自定义的调度器进行切换

20230805182717

内核线程

不管是创建进程(fork)还是创建线程(clone),都需要在内核调用do_fork()

202308061454307

而内核线程也可以通过kernel_thread()调用dofork()来创建

202308061457745

与内核级线程不同,内核线程不能访问用户态内存空间

  • active_mm:用于指向进程所处的虚拟地址空间 (用户态或者内核态)
  • mm: 用户态虚拟地址空间
  • init_mm: 内核态虚拟地址空间,全局只有一个

当进程处于内核态时,指向内核态的地址空间active_mm=mm;当进程处于用户态时,指向用户态的地址空间;active_mm=init_mm

202308061504355

而内核线程的mm=null,因此不能访用户态虚拟地址空间

Tip:1号进程如何从内核进程转变为普通进程?

  1. 先加载可执行文件,设置mm
202308061513248
  1. 设置寄存器,切换到用户态(为数不多从内核态切到用户态的)
202308061516009

线程的状态

在工作中,线程池是肯定会遇到的,会经常遇到线程的状态的变化,一般线程的状态为:创建、就绪、运行、阻塞、结束

202308061525614

还是一个状态很重要:挂起

阻塞挂起:当一个线程处于阻塞时,而其他运行中的线程需要的内核又很多,系统会把这个阻塞线程的内存交换到磁盘,即使等待的事件到达了,也只能转变为就绪挂起状态
阻塞解挂:当磁盘中的数据加载到内存后,线程的状态就从阻塞挂起变成了阻塞

同理,就绪状态的线程也可能会挂起

而处于运行中的线程,如果也因为内存不够,就会转变为就绪挂起状态

202308061539976

Linux线程的状态

  1. task_running: Linux线程没有就绪状态,或者说就绪状态和运行状态的值都是task_running,但Linux会把一个专门用来指向当前运行任务的指针 current 指向它,以表示它是一个正在运行的线程。
202308061548326
  1. TASK_INTERRUPTIBLE/TASK_UNINTERRUPTIBLE:阻塞状态(可中断和不可中断)

正常来说,一个线程需要进行IO操作,此时将会阻塞,等待IO操作完成后,再继续执行

202308061552838

但现在,在阻塞的时候,其他线程发了一个kill- 9的命令,如果是可中断的阻塞,需要响应这个信号,杀死自己;而如果是不可中断,则不会响应这个信号

202308061557745

不可中断的阻塞是个很危险的事情,一旦 I/O 操作因为特殊原因不能完成,这个时候,谁也叫不醒这个进程了;所以一般只有内核线程才会设置这个状态,比如执行磁盘IO(DMA搬运数据被打断可能会产生严重问题)时

总结下线程的执行效率比进程高

  1. 线程创建直接重用进程的资源即可,不需要额外维护,线程释放也不需要考虑资源释放的问题
  2. 线程间数据共享,不需要切内核就可以访问共享数据
  3. 线程切换要快,进程的切换需要切换进程对应的页表,需要 flush TLB,而刷新TLB后页表项都不会命中LTB,需要去内存查找页表,而线程共享页表

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/168152.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ElasticSearch7.x - HTTP 操作 - 查询文档操作

查询索引下的所有文档 http://192.168.254.101:9200/shopping/_search 条件查询 请求路径上添加条件:http://192.168.254.101:9200/shopping/_search?q=category:小米 请求体上添加条件:http://192.168.254.101:9200/shopping/_search 请求体内容 {"query" :{&qu…

「我在淘天做技术」音视频技术及其在淘宝内容业务中的应用

作者:李凯 一、前言 近年来,内容电商似乎已经充分融入到人们的生活中:在闲暇时间,我们已经习惯于拿出手机,从电商平台的直播间、或者短视频链接下单自己心仪的商品。 尽管优质的货品、实惠的价格、精致的布景、有趣的…

Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException:

错误描述如下所示: 我们将错误拉到最下面如下所示为导致异常的原因: Caused by: org.springframework.beans.factory.NoSuchBeanDefinitionException: No qualifying bean of type com.example.reviewmybatisplus.Service.UserService available: expec…

植发机构服务预约小程序的效果如何

不只是老年人,也有不少年轻人承受着掉发秃顶的痛点,工作压力提升及生活行为不规范,掉发脱发成为近些年来一个热门话题,同时植发服务高需求背景下,也促进着市场中各机构需要不断提升业务价值及客户体验,同时…

2023最新软件测试面试300问

一、Linux系统应用和环境配置 1、Linux系统的操作命令给我说10个,一般用什么工具远程连接Linux服务器? 2、Linux中的日志存储在哪里?怎么查看日志内容? 3、Linux中top和ps命令的区别? 4、Linux命令运行的结果如何写…

Libra R-CNN: Towards Balanced Learning for Object Detection(2019.4)

文章目录 AbstractIntroduction引入问题1) Sample level imbalance2) Feature level imbalance3) Objective level imbalance进行解决贡献 Related Work(他人的work,捎带与我们的对比)Model architectures for object detection&a…

【Unity程序小技巧】如何消除多次Destory带来的性能消耗

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:Uni…

跨镜头目标融合__追踪之目标重识别研究(跨镜头目标追踪)

文章目录 标题:跨镜头目标融合;目标重识别;跨镜头目标追踪; 1 目的:2 实现方法/策略:2.1 目标类型位置匹配(或考虑结合目标轨迹)2.2 目标重识别2.3 目标类型位置匹配(轨迹)目标重识别…

PowerPoint to HTML5 SDK Crack

Convert PowerPoint to HTML5 Retaining Animations, Transitions, Hyperlinks, Smartart, Triggers and other multimedia effects World’s first and industry best technology for building web/mobile based interactive presentations directly from PowerPoint – that …

2022最新版-李宏毅机器学习深度学习课程-P50 BERT的预训练和微调

模型输入无标签文本(Text without annotation),通过消耗大量计算资源预训练(Pre-train)得到一个可以读懂文本的模型,在遇到有监督的任务是微调(Fine-tune)即可。 最具代表性是BERT&…

YOLOv8模型ONNX格式INT8量化轻松搞定

ONNX格式模型量化 深度学习模型量化支持深度学习模型部署框架支持的一种轻量化模型与加速模型推理的一种常用手段,ONNXRUNTIME支持模型的简化、量化等脚本操作,简单易学,非常实用。 ONNX 模型量化常见的量化方法有三种:动态量化…

Centos配置邮件发送

在CentOS Linux上配置邮件发送 在这个指南中,我们将讨论如何配置CentOS Linux系统以通过外部邮件服务器发送电子邮件,使用自己的邮件账户进行发送。 第一步:开启SMTP授权码 首先,我们以QQ邮箱为例,需要开启SMTP授权…