数据分析实战 | SVM算法——病例自动诊断分析

目录

一、数据分析及对象

二、目的及分析任务

三、方法及工具

四、数据读入

五、数据理解

六、数据准备

七、模型训练

八、模型应用及评价


一、数据分析及对象

CSV文件——“bc_data.csv”

数据集链接:https://download.csdn.net/download/m0_70452407/88524905

该数据集主要记录了569个病例的32个属性,主要属性/字段如下:

(1)ID:病例的ID。

(2)Diagnosis(诊断结果):M为恶性,B为良性。该数据集共包含357个良性病例和212个恶性病例。

(3)细胞核的10个特征值,包括radius(半径)、texture(纹理)、perimeter(周长)、面积(area)、平滑度(smoothness)、紧凑度(compactness)、凹面(concavity)、凹点(concave points)、对称性(symmetry)和分形维数(fractal dimension)等。同时,为上述10个特征值分别提供了3种统计量,分别为均值(mean)、标准差(standard error)和最大值(worst or largest)。

二、目的及分析任务

(1)使用训练集对SVM模型进行训练。

(2)使用SVM模型对威斯康星乳腺癌数据集的诊断结果进行预测。

(3)对SVM模型进行评价。

三、方法及工具

Python语言及pandas、NumPy、matplotlib、scikit-learn包。

svm.SVC的超参数及其解读:

svm.SVC的超参数及其解读
参数名称参数类型说明
C浮点型,必须为正,默认值为1.0在sklearn.svm.SVC中使用的惩罚是L2范数的平方,C对应的是此惩罚的正则化参数,即惩罚的系数。C值越大,则表明对分类错误的惩罚越大,因此分类结果更倾向于全正确的情况;C值越小,则表明对分类错误的惩罚越小,因此分类结果将允许更多的错误。
kernel可以是以下中的任意字符:’linear','poly','rbf','sigmoid','precomputed';默认为'rbf'。核函数类型,'rbf'为径向基函数,'linear'为线性核,'poly'为多项式核函数
degree类型int,默认值为3当指定kernel为'poly'时,表示选择的多项式的最高次数,默认为三次多项式(poly)
gamma'scale'、’auto'或者'float',默认值为'scale'(在0.22版本之前,默认为'auto'gamma为'rbf'、’poly'、'sigmoid'的核系数。
decision_function_shape默认为'ovr',只有两个值可供选择'ovr'和'ovo'在处理多分类问题时,确定采用某种策略。'ovr'表示一对一的分类器,假如有k个类别,则需要构建k*(k-1)/2个分类器;'ovo'为一对多的分类器,假如有k个类别,则需要构建k个分类器。

四、数据读入

导入需要的第三方包:

import pandas as pd
import numpy as np
import matplotlib.pyplot#导入sklearn的svm
from sklearn import svm#导入metrics评估方法
from sklearn import metrics#train_test_split用于拆分训练集和测试集
from sklearn.model_selection import train_test_split#StandardScalery作用是去均值和方差归一化
from sklearn.preprocessing import StandardScaler

读入数据:

df_bc_data=pd.read_csv("D:\\Download\\JDK\\数据分析理论与实践by朝乐门_机械工业出版社\\第4章 分类分析\\bc_data.csv")

对数据集进行显示:

df_bc_data

五、数据理解

对数据框df_bc_data进行探索性分析,这里采用的实现方法为调用pandas包中数据框(DataFrame)的describe()方法。

df_bc_data.describe()

 查看数据集中是否存在缺失值:

df_bc_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):#   Column                   Non-Null Count  Dtype  
---  ------                   --------------  -----  0   id                       569 non-null    int64  1   diagnosis                569 non-null    object 2   radius_mean              569 non-null    float643   texture_mean             569 non-null    float644   perimeter_mean           569 non-null    float645   area_mean                569 non-null    float646   smoothness_mean          569 non-null    float647   compactness_mean         569 non-null    float648   concavity_mean           569 non-null    float649   concave points_mean      569 non-null    float6410  symmetry_mean            569 non-null    float6411  fractal_dimension_mean   569 non-null    float6412  radius_se                569 non-null    float6413  texture_se               569 non-null    float6414  perimeter_se             569 non-null    float6415  area_se                  569 non-null    float6416  smoothness_se            569 non-null    float6417  compactness_se           569 non-null    float6418  concavity_se             569 non-null    float6419  concave points_se        569 non-null    float6420  symmetry_se              569 non-null    float6421  fractal_dimension_se     569 non-null    float6422  radius_worst             569 non-null    float6423  texture_worst            569 non-null    float6424  perimeter_worst          569 non-null    float6425  area_worst               569 non-null    float6426  smoothness_worst         569 non-null    float6427  compactness_worst        569 non-null    float6428  concavity_worst          569 non-null    float6429  concave_points_worst     569 non-null    float6430  symmetry_worst           569 non-null    float6431  fractal_dimension_worst  569 non-null    float64
dtypes: float64(30), int64(1), object(1)
memory usage: 142.4+ KB

查看数据是否存在不均衡的问题:

df_bc_data['diagnosis'].value_counts()
B    357
M    212
Name: diagnosis, dtype: int64

六、数据准备

由于id一列并非为自变量或因变量,删除该列。

new_bc=df_bc_data.drop(['id'],axis=1)

将diagnosis属性字段的取值,'M'使用1代替,'B'使用0代替。

new_bc['diagnosis']=new_bc['diagnosis'].map({'M':1,'B':0})

将数据集拆分为训练集和测试集,这里使用20%的数据作为测试集。

bc_train,bc_test=train_test_split(new_bc,test_size=0.2)

将训练集和测试集的数据属性和标签进行拆分。

#对训练集的数据和标签进行拆分
bc_train_data=bc_train.iloc[:,1:]
bc_train_label=bc_train['diagnosis']
#对测试集的数据和标签进行拆分
bc_test_data=bc_test.iloc[:,1:]
bc_test_label=bc_test['diagnosis']

为了排除数值的量纲对结果的影响,需要对训练数据和预测数据进行标准化处理。

bc_train_data=StandardScaler().fit_transform(bc_train_data)
bc_test_data=StandardScaler().fit_transform(bc_test_data)

七、模型训练

使用训练集训练SVM模型。除了直接指定参数的数值之外,还可以使用自动调参计数(如GridSearchCV)进行参数选择。

bc_model=svm.SVC(C=0.2,kernel='linear') #创建SVM分类器
bc_model.fit(bc_train_data,bc_train_label)  #训练模型
SVC(C=0.2, kernel='linear')

八、模型应用及评价

使用已经训练好的SVM模型,在测试集上进行测试,并输出评价指标的取值。

#在测试集上应用模型,并进行评价
prediction=bc_model.predict(bc_test_data)
#评价指标
print("混淆矩阵:\n",metrics.confusion_matrix(bc_test_label,prediction))
print("准确率:",metrics.accuracy_score(bc_test_label,prediction))
print('查准率:',metrics.precision_score(bc_test_label,prediction))
print('召回率:',metrics.recall_score(bc_test_label,prediction))
print("F1值:",metrics.f1_score(bc_test_label,prediction))
混淆矩阵:[[74  0][ 1 39]]
准确率: 0.9912280701754386
查准率: 1.0
召回率: 0.975
F1值: 0.9873417721518987

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/168447.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

parasoft Jtest 使用教程:防止和检查内存问题

Jtest提供了一组代码标准规则旨在确定那些可以导致内存问题的编码模式。此外&#xff0c;Jtest可以在它执行测试用例的过程检测内存泄露。为了达到这个目的&#xff0c;它在测试执行的过程中监控对象的分配事件和对象释放事件。如果一个对象被分配内存空间&#xff0c;但是在测…

【电路笔记】-节点电压分析和网状电流分析

节点电压分析和网状电流分析 文章目录 节点电压分析和网状电流分析1、节点电压分析1.1 概述1.2 示例 2、网格电流分析2.1 概述2.2 示例 3、总结 正如我们在上一篇介绍电路分析基本定律的文章中所看到的&#xff0c;基尔霍夫电路定律 (KCL) 是计算任何电路中未知电压和电流的强大…

基于安卓android微信小程序的四六级助手系统

项目介绍 随着我国教育需求不断增加&#xff0c;高校教育资源有限&#xff0c;教育经费相对不足的情况下&#xff0c;利用现代信息技术发展高等教育&#xff0c;不仅充分利用了优秀的教育资源&#xff0c;而且为更多的人提供接受高等教育的机会&#xff0c;同时这也是极大促进…

【11】使用透视投影建立一个3D空间的测试

核心操作&#xff1a; 1.proj view model 这三个矩阵 glm::mat4 mvp m_Proj * m_View * model; m_Shader->Bind(); m_Shader->SetUniformMat4f("u_MVP", mvp);着色器里面就&#xff1a; proj:投影矩阵&#xff0c;可以选择正交投影&#xff0c;或者透视投影…

NtripShare Mos地铁自动化监测终端盒子硬件设计

自动化监测产品到目前为止做了接近一年&#xff0c;在软件层面上&#xff0c;控制终端软件、平台软件、网平差算法都已解决&#xff0c;硬件盒子始终是心里过不去的坎&#xff0c;最终还是没有耐住性子自己做了一把。 选型如下&#xff1a; 1、主板:瑞芯微RK3568主板。 2、外…

为什么要学习去使用云服务器,外网 IP能干什么,MAC使用Termius连接阿里云服务器。保姆级教学

目录 引言 可能有人想问为什么要学习云服务器&#xff1f; &#xff08;获取Linux环境&#xff0c;获得外网IP) 二、安装教程 引言 可能有人想问为什么要学习云服务器&#xff1f; &#xff08;获取Linux环境&#xff0c;获得外网IP) 1.虚拟机&#xff08;下策&#xff09; …

SplayTree高分测试用例

测试用例结果展示 覆盖率 变异得分 测试注意点 从SplayTree测起&#xff0c;然后再测SubSplayTree&#xff0c;因为前者调用后者。SplaySubTree的remove方法大部分内容需要通过反射才能测到。value和index在SplayTree当中都不是唯一的。一个index可能对应多个value。 不足之…

野火i.MX6ULL开发板检测按键evtest(Linux应用开发)

之前一直查找不到evtest&#xff0c;因为没有下载成功&#xff0c;很可能是网络不好&#xff0c;下次可以软件源可以换成国内大学镜像网站。 重新断开板子电源启动&#xff0c;再次连接网络&#xff0c;下载evtest成功&#xff01;&#xff01;

思维模型 多看效应

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。越熟悉&#xff0c;越喜欢。 1 多看效应的应用 1.1 多看效应在广告和营销领域的应用 1 可口可乐之歌 可口可乐公司在 20 世纪 60 年代推出了“可口可乐之歌”广告&#xff0c;这个广告通…

【苍穹外卖 | 项目日记】第九天 万字总结

前言&#xff1a; 之前就写完了&#xff0c;用了几天补一下项目总结&#xff0c;本文会从宏观上介绍整体项目构架和所应用的技术以及项目亮点&#xff0c;最后再加上我个人的感悟。本文适合打算开始写苍穹外卖的小伙伴阅读&#xff0c;提高对整体项目的认知。 往期项目日记&am…

竞赛选题 深度学习疲劳驾驶检测 opencv python

文章目录 0 前言1 课题背景2 实现目标3 当前市面上疲劳驾驶检测的方法4 相关数据集5 基于头部姿态的驾驶疲劳检测5.1 如何确定疲劳状态5.2 算法步骤5.3 打瞌睡判断 6 基于CNN与SVM的疲劳检测方法6.1 网络结构6.2 疲劳图像分类训练6.3 训练结果 7 最后 0 前言 &#x1f525; 优…

Leetcode2834. 找出美丽数组的最小和

Every day a Leetcode 题目来源&#xff1a;2834. 找出美丽数组的最小和 解法1&#xff1a;贪心 从最小正整数 1 开始枚举&#xff0c;设当前数为 num&#xff0c;如果 nums 里没有 target - num&#xff0c;就说明可以添加 num&#xff0c;依次填满直到有 n 个数即可。 用…