报时机器人的rasa shell执行流程分析

  本文以报时机器人为载体,介绍了报时机器人的对话能力范围、配置文件功能和训练和运行命令,重点介绍了rasa shell命令启动后的程序执行过程。

一.报时机器人项目结构

1.对话能力范围

(1)能够识别欢迎语意图(greet)和拜拜意图(goodbye)
(2)能够识别时间意图(query_time)
(3)能够识别日期意图(query_date)
(4)能够识别星期几意图(query_weekday)

2.配置文件功能

(1)nlu.yml:主要包含意图、例子、对实体的标注等。
(2)stories.yml文件:用户和机器人之间对话的表示,用户输入意图,机器人响应action。
(3)actions.py:自定义的action,比如action_query_time、action_query_date、action_query_weekday。
(4)config.yml:主要包含nlu(分词、特征提取和分类等)和dialog policy(记忆、规则、机器学习等)。
(5)domain.yml:主要包含意图、视图、槽位、响应、动作等。
(6)credentials.yml:主要和其它对话平台集成,比如facebook、slack等。
(7)endpoints.yml:action_endpoint(调用自定义action)、tracker_store对话存储(内存、redis、mongodb等)、event_broker消息队列(RabbitMQ、Kafka等)。

3.训练和运行命令

(1)训练模型
使用NLU数据和stories训练模型,模型保存在./models中。

rasa train

说明:关于如何把数据集按照比例拆分为训练集和测试集,在训练集上训练模型,在测试集上测试模型,可以参考《聊天机器人框架Rasa资源整理》。
(2)启动action服务器
使用Rasa SDK开启action服务器。

rasa run actions

(3)启动rasa服务器和客户端
通过命令行的方式加载训练模型,然后同聊天机器人进行对话。

rasa shell

二.rasa shell执行流程分析

  整体思路是通过rasa shell加载和解析模型,通过消息处理的方式建立起用户(客户端)和聊天机器人(rasa服务)对话的桥梁。

1.rasa/cli/shell.py文件

  在rasa/cli/shell.py文件中,def shell(args: argparse.Namespace) -> None函数如下:

2.rasa/cli/run.py文件

  在rasa/cli/run.py文件中,def run(args: argparse.Namespace) -> None函数如下:

3.rasa/api.py文件

  在rasa/api.py文件中,def run(...) -> None函数如下:

  在run()函数中调用serve_application()函数如下:

4.rasa/core/run.py文件

  在rasa/core/run.py文件中,serve_application()函数如下:

  在serve_application()函数中启动了一个基于Sanic的Web服务器,通过configure_app()方法构建了app,然后通过run()方法启动,如下所示:

app = configure_app(input_channels,cors,auth_token,enable_api,response_timeout,jwt_secret,jwt_method,port=port,endpoints=endpoints,log_file=log_file,conversation_id=conversation_id,use_syslog=use_syslog,syslog_address=syslog_address,syslog_port=syslog_port,syslog_protocol=syslog_protocol,request_timeout=request_timeout,)
......    
app.run(host=interface,port=port,ssl=ssl_context,backlog=int(os.environ.get(ENV_SANIC_BACKLOG, "100")),workers=number_of_workers,)

  通过register_listener(listener, event)注册给定事件的侦听器:

app.register_listener(partial(load_agent_on_start, model_path, endpoints, remote_storage), "before_server_start",)
app.register_listener(close_resources, "after_server_stop")

5.rasa/core/agent.py文件

  通过load_agent_on_start()方法加载一个agent。在rasa/core/agent.py文件中,load_agent()函数如下所示:

  在load_agent()函数中,加载模型代码是agent.load_model(model_path)。在Agent类的def load_model()方法中,关于初始化MessageProcessor代码如下:

self.processor = MessageProcessor(model_path=model_path,tracker_store=self.tracker_store,lock_store=self.lock_store,action_endpoint=self.action_endpoint,generator=self.nlg,http_interpreter=self.http_interpreter,
)

加载模型的代码如下:

logger.info(f"Loading model {model_tar}...")
with tempfile.TemporaryDirectory() as temporary_directory:try:metadata, runner = loader.load_predict_graph_runner(Path(temporary_directory),Path(model_tar),LocalModelStorage,DaskGraphRunner,)return os.path.basename(model_tar), metadata, runnerexcept tarfile.ReadError:raise ModelNotFound(f"Model {model_path} can not be loaded.")

6.rasa/engine/loader.py文件

  在rasa/engine/loader.py文件中,def load_predict_graph_runner()函数如下:

三.遇到的问题和说明

1.如何用PyCharm调试Rasa项目

解析:一种是基于Script path的调试方法,一种是基于Module name的调试方法。这里介绍前者如下所示:

(1)Script Path:安装rasa类库的__main__.py文件路径。
(2)Parameters:rasa的各种cli,比如train、test、shell等。
(3)Working directory:安装rasa类库的根目录。
说明:因为rasa类库依赖类库太多导致系统环境混乱,所示建议使用虚拟环境进行rasa类库安装。

2.NoConsoleScreenBufferError

解析:exception=NoConsoleScreenBufferError(‘No Windows console found. Are you running cmd.exe?’)

3.模型20220915-081548-honest-yield.tar.gz

解析:由metadata.json文件和components文件夹组成,后者和config.yml内容密切相关,如下所示:

4.Sanic框架

解析:Sanic是一个高性能异步的Web框架。

5.asyncio库

解析:它的编程模型是一个消息循环,关键字涉及event_loop、coroutine、task、future、async/await等。

  本文只是简要的介绍了rasa shell命令启动后的程序执行过程,但是对于加载模型后如何解析模型构建图,以及用户输入后,消息如何通过模型(nlu和dialog policy)得到输出并没有介绍,后面写篇文章专门介绍。

参考文献:
[1]Rasa实战:构建开源对话机器人
[2]Sanic官方文档:https://www.osgeo.cn/sanic/
[3]asyncio库异步I/O:https://docs.python.org/3.7/library/asyncio.html
[4]聊天机器人框架Rasa资源整理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/168586.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ROS 学习应用篇(三)话题Topic学习之自定义话题消息的类型的定义与调用

自定义消息类型的定义 Person.msg文件的定义(数据接口文件的定义) 创建msg文件 首先在功能包下新建msg文件夹,接着在该文件夹下创建文件。 定义msg文件内容 一个消息最重要的就是数据结构类型。这就需要引入一个msg文件,用于…

剑指offer(C++)-JZ21:调整数组顺序使奇数位于偶数前面(一)(算法-其他)

作者:翟天保Steven 版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处 题目描述: 输入一个长度为 n 整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数…

【React入门实战】实现Todo代办

文章目录 效果功能-状态管理相关接口定义相关方法定义 UIinput输入框:回车添加todo标题列表列表项Main 总体代码 非常简单入门的react-todo练习,代码写的很小白。 效果 技术栈:react-typeScript 数据分为代办Todo和已办完Done,可…

SpringBoot项目调用openCV报错:nested exception is java.lang.UnsatisfiedLinkError

今天在通过web项目调用openCV的时候提示如下错误: nested exception is java.lang.UnsatisfiedLinkError:org.opencv.imgcodecs.Imgcodecs.imread_0(Ljava/la如下图所示: 但是通过直接启动java main函数确正常,初步诊断和SpringBoot热加载…

基于SpringBoot+Redis的前后端分离外卖项目-苍穹外卖(二)

新增员工功能开发 1. 新增员工1.1 需求分析和设计1.1.1 产品原型1.1.2 接口设计1.1.3 表设计 1.2 代码开发1.2.1 设计DTO类1.2.2 Controller层1.2.3 Service层接口1.2.4 Service层实现类1.2.5 Mapper层 1.3 功能测试1.3.1 接口文档测试 1.4 代码完善1.4.1 问题一1.4.2 问题二1.…

element-ui中el-table数据合并行和列,应该怎么解决

最近接到一个任务,要实现一个数据报表,涉及到很多合并问题,一开始想着原生会简单点,实际上很麻烦,最后还是用elemen-ui中table自带的合并方法. 最终的效果是要做成这种:1.数据处理,后端返回来的数据是,一个大对象,包含三个数组,既然合并,肯定是要处理成一个数组,并且要把相同的…

ARM-Cortex_M3/M4处理器开发简介

一、关于ARM-Cortex_M4处理器 ARM-Cortex_M3和ARM-Cortex_M4处理器使用32位架构,寄存器组中的内部寄存器、数据通路以及总线接口都是32位的,两者均基于ARMv7-M架构。 1、 Cortex_M处理器使用的指令集架构(ISA)为Thumb ISA&…

笔记:AI量化策略开发流程-基于BigQuant平台(一)

从本文开始,按照AI策略开发的完整流程(共七步),上手在BigQuant平台上快速构建AI策略。本文首先介绍如何使用证券代码模块指定股票范围和数据起止日期。重要的事情说三遍:模块的输入端口有提示需要连线的上游数据类型&a…

try-catch-finally执行以及他们在有return的情况下,基本数据类型、对象以及有异步赋值情况异同分析

这两天面试,遇到好几个人,都是那种我感觉我肚子里的墨水都吐出来完了,难不倒人家,于是问了下家里那位老狗,从最开始就念叨着你问他try-catch在有return的情况下怎么执行的,执行结果是啥,我前面没理,后面确实有点遭不住了,来看看吧,肚子里添点墨水,别把脸丢大了~ 做…

C#中.NET 7.0控制台应用使用LINQtoSQL、LINQtoXML

目录 一、新建控制台应用和数据库连接 二、手动添加System.Data.Linq程序包 三、手动添加System.Data.SqlClient程序包 四、再次操作DataClasses1.dbml 五、示例 1.源码 2.xml文件 默认安装的.NET 7.0控制台应用是不支持使用LINQtoSQL、LINQtoXML的。 默认安装的.NET F…

玩转ansible之参数调试和文件操作篇

更多IT技术文章,欢迎关注微信公众号“运维之美” 玩转ansible之参数调试和文件操作篇 01 剧本调试和帮助02 使用场景举例 上节我们学习了使用ansible进行软件安装,那么安装完软件后,就需要linux系统和软件配置修改了,对于linux主机…

人工智能与教育:未来的技术融合

人工智能与教育:未来的技术融合 随着科技的飞速发展,人工智能(AI)逐渐渗透到我们生活的方方面面,包括教育领域。AI与教育的结合,有望引发一场教育变革,提高教学效果,实现个性化学习&…