【图像处理:OpenCV-Python基础操作】

【图像处理:OpenCV-Python基础操作】

  • 1 读取图像
  • 2 显示图像
  • 3 保存图像
  • 4 图像二值化、灰度图、彩色图,像素替换
  • 5 通道处理(通道拆分、合并)
  • 6 调整尺寸大小
  • 7 提取感兴趣区域、掩膜
  • 8 乘法、逻辑运算
  • 9 HSV色彩空间,获取特定色彩区域
  • 10 滤波处理(均值,高斯、中值、形态学)

参考:李立宗. 计算机视觉40例从入门到深度学习(OpenCV-Python)[M],电子工业出版社,2022.

pip install opencv-python opencv-contrib-python(贡献库有诸多算法,有必要安装)

1 读取图像

import cv2
lena=cv2.imread("lenacolor.png")
print(lena)

2 显示图像

import cv2
lena=cv2.imread("lena.bmp")
cv2.imshow("demo1", lena )
cv2.imshow("demo2", lena )
cv2.waitKey()
cv2.destroyAllWindows()

3 保存图像

import cv2
lena=cv2.imread("lena.bmp")
r=cv2.imwrite("result.bmp",lena)

4 图像二值化、灰度图、彩色图,像素替换

import cv2
import numpy as np
img=np.zeros((8,8),dtype=np.uint8)
print("img=\n",img)
cv2.imshow("one",img)
print("读取像素点img[0,3]=",img[0,3])
img[0,3]=255
print("修改后img=\n",img)
print("读取修改后像素点img[0,3]=",img[0,3])
cv2.imshow("two",img)
cv2.waitKey()
cv2.destroyAllWindows()
import cv2
img=cv2.imread("lena.bmp",0)
cv2.imshow("before",img)
print("img[50,90]原始值:",img[50,90])
img[10:100,80:100]=255
print("img[50,90]修改值:",img[50,90])
cv2.imshow("after",img)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

import cv2
img=cv2.imread("lenacolor.png")
cv2.imshow("before",img)
print("访问img[0,0]=",img[0,0])
print("访问img[0,0,0]=",img[0,0,0])
print("访问img[0,0,1]=",img[0,0,1])
print("访问img[0,0,2]=",img[0,0,2])
print("访问img[50,0]=",img[50,0])
print("访问img[100,0]=",img[100,0])
#区域1:白色
img[0:50,0:100,0:3]=255
#区域2:灰色
img[50:100,0:100,0:3]=128
#区域3 :黑色
img[100:150,0:100,0:3]=0 
#区域4 :红色
img[150:200,0:100]=(0,0,255)          
#显示
cv2.imshow("after",img)
print("修改后img[0,0]=",img[0,0])
print("修改后img[0,0,0]=",img[0,0,0])
print("修改后img[0,0,1]=",img[0,0,1])
print("修改后img[0,0,2]=",img[0,0,2])
print("修改后img[50,0]=",img[50,0])
print("修改后img[100,0]=",img[100,0])
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

5 通道处理(通道拆分、合并)

import cv2
lena=cv2.imread("lenacolor.png")
cv2.imshow("lena",lena)
b=lena[:,:,0]
g=lena[:,:,1]
r=lena[:,:,2]
cv2.imshow("b",b)
cv2.imshow("g",g)
cv2.imshow("r",r)
lena[:,:,0]=0
cv2.imshow("lenab0",lena)
lena[:,:,1]=0
cv2.imshow("lenab0g0",lena)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

在这里插入图片描述

import cv2
lena=cv2.imread("lenacolor.png")
b,g,r=cv2.split(lena)
bgr=cv2.merge([b,g,r])
rgb=cv2.merge([r,g,b])
cv2.imshow("lena",lena)
cv2.imshow("bgr",bgr)
cv2.imshow("rgb",rgb)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

6 调整尺寸大小

import cv2
img=cv2.imread("test.bmp")
rows,cols=img.shape[:2]
size=(int(cols*0.9),int(rows*0.5))
rst=cv2.resize(img,size)
print("img.shape=",img.shape)
print("rst.shape=",rst.shape)

img.shape= (512, 51, 3)
rst.shape= (256, 45, 3)

7 提取感兴趣区域、掩膜

import cv2
a=cv2.imread("lenacolor.png",cv2.IMREAD_UNCHANGED)
face=a[220:400,250:350]
cv2.imshow("original",a)
cv2.imshow("face",face)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

import cv2
import numpy as np
m1=np.zeros([600,600],np.uint8)
m1[200:400,200:400]=255
m2=np.zeros([600,600],np.uint8)
m2[200:400,200:400]=1
cv2.imshow('m1',m1)
cv2.imshow('m2',m2)
cv2.imshow('m2*255',m2*255)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

8 乘法、逻辑运算

import cv2
import numpy  as np
o=cv2.imread("lenacolor.png",1) 
h,w,c=o.shape
m=np.zeros((h,w,c),dtype=np.uint8)
m[100:400,200:400]=1
m[100:500,100:200]=1
result=m*o
cv2.imshow("o",o)
cv2.imshow("mask",m*255)   #m*255,确保能显示
cv2.imshow("result",result)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

import cv2
import numpy  as np
o=cv2.imread("lenacolor.png",1) 
h,w,c=o.shape
m=np.zeros((h,w,c),dtype=np.uint8)
m[100:400,200:400]=255
m[100:500,100:200]=255
result=cv2.bitwise_and(o,m)
cv2.imshow("original",o)
cv2.imshow("mask",m)   
cv2.imshow("result",result)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

import cv2
import numpy  as np
o=cv2.imread("lenacolor.png",1) 
t=cv2.imread("text.png",1) 
h,w,c=o.shape
m=np.zeros((h,w),dtype=np.uint8)
m[100:400,200:400]=255
m[100:500,100:200]=255
r=cv2.add(o,t,mask=m)
cv2.imshow("orignal",o)
cv2.imshow("text",t)
cv2.imshow("mask",m)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

9 HSV色彩空间,获取特定色彩区域

import cv2
import numpy as np
img=cv2.imread("x.jpg")
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
min_HSV = np.array([0 ,10,80], dtype = "uint8")
max_HSV = np.array([33, 255, 255], dtype = "uint8")
mask = cv2.inRange(hsv, min_HSV, max_HSV)
reusult = cv2.bitwise_and(img,img, mask= mask)
cv2.imshow("img",img)
cv2.imshow("reusult",reusult)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

10 滤波处理(均值,高斯、中值、形态学)

也可以叫平滑处理
(1)均值滤波

import cv2
o=cv2.imread("lenaNoise.png")
r3=cv2.blur(o,(3,3))      
r11=cv2.blur(o,(11,11))      
cv2.imshow("original",o)
cv2.imshow("result3",r3)
cv2.imshow("result11",r11)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述
(2)高斯滤波

import cv2
o=cv2.imread("lenaNoise.png")
r1=cv2.GaussianBlur(o,(5,5),0,0)
r2=cv2.GaussianBlur(o,(5,5),0.1,0.1)
r3=cv2.GaussianBlur(o,(5,5),1,1)
cv2.imshow("original",o)
cv2.imshow("result1",r1)
cv2.imshow("result2",r2)
cv2.imshow("result3",r3)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述
(3)中值滤波

import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.medianBlur(o,3)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述
(4)膨胀、腐蚀

import cv2
import numpy as np
o=cv2.imread(r"erode.bmp",cv2.IMREAD_UNCHANGED)
kernel1 = np.ones((3,3),np.uint8)
erosion1 = cv2.erode(o,kernel1)
kernel2 = np.ones((7,7),np.uint8)
erosion2 = cv2.erode(o,kernel2,iterations = 5)
cv2.imshow("orriginal",o)
cv2.imshow("erosion1",erosion1)
cv2.imshow("erosion2",erosion2)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

import cv2
import numpy as np
o=cv2.imread("dilation.bmp",cv2.IMREAD_UNCHANGED)
kernel = np.ones((5,5),np.uint8)
dilation1 = cv2.dilate(o,kernel)
dilation2 = cv2.dilate(o,kernel,iterations = 9)
cv2.imshow("original",o)
cv2.imshow("dilation1",dilation1)
cv2.imshow("dilation2",dilation2)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/174188.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django实战项目-学习任务系统-任务完成率统计

接着上期代码内容,继续完善优化系统功能。 本次增加任务完成率统计功能,为更好的了解哪些任务完成率高,哪些任务完成率低。 该功能完成后,学习任务系统1.0版本就基本完成了。 1,编辑urls配置文件: ./mysi…

千万富翁分享:消费多少免单多少,电商运营高手实战秘籍拆解

千万富翁分享:消费多少免单多少,电商运营高手实战秘籍拆解 后疫情时代,国内电商圈层进程依然是在高速发展阶段,今年2023年双十一也彻底落下帷幕,但这次相较于往常却没有公布具体的成交规模数据,那么&#x…

VS项目属性变量

VS项目属性变量 $(SolutionDir) 获取解决方案的路径 $(Platform) 平台名字 → x86 / x64 $(ProjectName) 工程名字 $(Configuration) 当前的项目模式 → Debug / Release

如何在 Windows 10/11 上高质量地将 WAV 转换为 MP3

WAV 几乎完全准确地存储了录音硬件所听到的内容,这使得它变得很大并占用了更多的存储空间。因此,WAV 格式在作为电子邮件附件发送、保存在便携式音频播放器上、通过蓝牙或互联网从一台设备传输到另一台设备等时可能无法正常工作。 如果您遇到 WAV 问题&…

做一个Springboot文章分类模块

目录 文章分类 1、新增文章分类 前言 代码编写 测试 2、 文章分类列表 前言 代码编写 测试 3、获取文章列表详情 前言 代码实现 测试 4、更新文章分类 前言 代码实现 测试 5、删除文章分类 前言 代码实现 测试 分页查询 文章列表条件分页 前言 代码编…

Netty Review - 核心组件扫盲

文章目录 PreNetty Reactor 的工作架构图CodePOMServerClient Netty 重要组件taskQueue任务队列scheduleTaskQueue延时任务队列Future异步机制Bootstrap与ServerBootStrapgroup()channel()option()与childOption()ChannelPipelinebind()优雅地关闭EventLoopGroupChannleChannel…

ts学习02-数据类型

新建index.html <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </h…

【数据结构】经典单链表OJ题!!

学习完单链表&#xff0c;习题就成了最好的巩固方式 目录 1.链表分割:思路&#xff1a;代码实现&#xff1a; 2.随机链表的复制:思路1&#xff1a;代码实现&#xff1a;思路2&#xff1a;代码实现&#xff1a; 3.环形链表:3.1环形链表1:思路&#xff1a;代码实现&#xff1a; 3…

Redis的特性以及使用场景

分布式发展历程参考 陈佬 http://t.csdnimg.cn/yYtWK 介绍redis Redis&#xff08;Remote Dictionary Server&#xff09;是一个基于客户端-服务器架构的在内存中存储数据的中间件&#xff0c;属于NoSQL的一种。它可以用作数据库、缓存/会话存储以及消息队列。 作为一种内存数…

Apache Airflow (三) :Airflow WebUI操作介绍

&#x1f3e1; 个人主页&#xff1a;IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 &#x1f6a9; 私聊博主&#xff1a;加入大数据技术讨论群聊&#xff0c;获取更多大数据资料。 &#x1f514; 博主个人B栈地址&#xff1a;豹哥教你大数据的个人空间-豹…

KB / KiB,MB / MiB,GB / GiB,… 的区别是什么?

GB和GiB&#xff1a;https://www.zhihu.com/question/24601215 1 显存容量指的是显存能够存储的数据量&#xff0c;单位是GB&#xff0c;显存容量越大 按照目前计算机存储来说&#xff0c;还是应该遵循二进制 严格意义上来讲&#xff0c;1 GB (Gigabyte)10^9 KB&#xff0c;而…

Unity随笔:C#运行时

Unity是如何编译运行C#的 &#xff08;1&#xff09;Unity会通过编译器将C#脚本编译成IL指令。 Unity会通过Roslyn来对C#代码进行编译&#xff0c;生成中间IL指令集。 当我们每次修改或者添加新的C#代码文件&#xff0c;Unity界面的右下角会出现短暂的“转圈”现象。这就意味…