Pytorch教程(代码逐行解释)

0、配准环境教程

1、开始导入相应的包

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

torch是pytorch的简写
torch.utils.data import DataLoader 是用于读取数据的迭代器
torchvision是视觉处理包,datasets导入的是视觉相关的数据集
transforms 是用于图像变换的。

2、下载数据集(准备数据集)

# Download training data from open datasets.
training_data = datasets.FashionMNIST(root="data",train=True,download=True,transform=ToTensor(),
)# Download test data from open datasets.
test_data = datasets.FashionMNIST(root="data",train=False,download=True,transform=ToTensor(),
)

datasets.FashionMNIST,指的是一个数据集,这个数据集用于服饰的识别。FashionMNIST是一个非常流行的图像分类数据集,其中包含10个类别的70000个28x28灰度图像。
当然,pytorch还有很多其他的数据集格式。例如以下的数据集。其他数据集可点击这个连接在这里插入图片描述

3、加载数据集

batch_size = 64# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)for X, y in test_dataloader:print(f"Shape of X [N, C, H, W]: {X.shape}")print(f"Shape of y: {y.shape} {y.dtype}")break

DataLoader是PyTorch中一个非常有用的模块,它主要用于批量加载数据,特别是当数据集非常大时,DataLoader可以极大地提高数据加载速度并减少内存占用。
DataLoader的主要功能包括:
批量处理数据:DataLoader可以将数据划分为多个批次(batch),每个批次包含一定数量的数据样本,然后一次处理一个批次的数据,这样可以大大减少内存占用。
数据打乱:通过设置shuffle=True参数,DataLoader可以在每个epoch开始时随机打乱数据集的顺序,这样可以增加模型的泛化能力。
batch_size 指的是每次读取的数据的大小,这里设置一次读取64张

4、创建训练的模型

# Get cpu, gpu or mps device for training.
device = ("cuda"if torch.cuda.is_available()else "mps"if torch.backends.mps.is_available()else "cpu"
)
print(f"Using {device} device")# Define model
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.linear_relu_stack = nn.Sequential(nn.Linear(28*28, 512),nn.ReLU(),nn.Linear(512, 512),nn.ReLU(),nn.Linear(512, 10))def forward(self, x):x = self.flatten(x)logits = self.linear_relu_stack(x)return logitsmodel = NeuralNetwork().to(device)
print(model)

super().init()表示调用父类(nn.Module)的 init() 方法
self.flatten = nn.Flatten(),这行代码的作用主要是在神经网络模型中的作用是将输入数据从多维(例如二维或三维)转化为一维,这个操作通常被称为"flatten"。
在这个例子中,该模型预期的输入是一个形状为[batch_size, 28, 28]的张量,即一个包含多个(这里是28*28=784个)特征值的数据集。nn.Flatten()层将这个三维数据转化为一维数组,以便后续的线性层(nn.Linear)能以更高效的方式进行操作。

nn.Sequential 是 PyTorch 中一个用于创建顺序神经网络模型的模块。它是一个有序的容器,可以包含任意数量的其他模块。当你将数据输入到 nn.Sequential 模型时,数据会按照你在容器中定义的顺序通过每个模块。

5、设置优化器以及损失函数

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

损失函数还有很多种,其他的参考点击这个链接
优化器也有很多种,如ASGD,ADAM等等,其他的参考这个链接

6、模型的训练

定义训练的过程

def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)model.train()for batch, (X, y) in enumerate(dataloader):X, y = X.to(device), y.to(device)# Compute prediction errorpred = model(X)loss = loss_fn(pred, y)# Backpropagationloss.backward()optimizer.step()optimizer.zero_grad()if batch % 100 == 0:loss, current = loss.item(), (batch + 1) * len(X)print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")

从数据集中,每次取一个图像个标签进行训练,然后反向传播,梯度优化,完成训练。
item():.item()是用来从张量中提取标量值的方法。当你调用.item()方法时,如果张量中只有一个元素,那么这个元素会被返回;如果张量中有多个元素,则会抛出一个错误。

def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss, correct = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)test_loss += loss_fn(pred, y).item()correct += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss /= num_batchescorrect /= sizeprint(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

correct += (pred.argmax(1) == y).type(torch.float).sum().item():解释:
(pred.argmax(1) == y):首先,这行代码通过argmax(1)获取了每个样本的预测类别。然后,它将预测类别与真实类别进行比较(==)。这将返回一个布尔型的张量,表示每个样本的预测是否正确。
(pred.argmax(1) == y).type(torch.float):接下来,这行代码将布尔型的张量转换为浮点型。在PyTorch中,布尔型的张量会自动转换为浮点型。
(pred.argmax(1) == y).type(torch.float).sum():然后,这行代码计算了所有样本中预测正确的总数。这是通过调用sum()函数实现的,该函数会返回一个张量中所有元素的和。
correct += …:最后,这行代码将预测正确的总数加到了变量correct上。+=是一个累加操作符,它将左侧的变量与右侧的表达式结果相加。

7、定义训练的轮次

epochs = 5
for t in range(epochs):print(f"Epoch {t+1}\n-------------------------------")train(train_dataloader, model, loss_fn, optimizer)test(test_dataloader, model, loss_fn)
print("Done!")

8、保存模型

torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")

model.state_dict():解释:
model.state_dict()函数返回一个包含模型所有参数的字典,torch.save()函数则将这个字典保存到磁盘上的一个文件。

9、加载模型

model = NeuralNetwork().to(device)
model.load_state_dict(torch.load("model.pth"))

10、模型的测试

classes = ["T-shirt/top","Trouser","Pullover","Dress","Coat","Sandal","Shirt","Sneaker","Bag","Ankle boot",
]model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():x = x.to(device)pred = model(x)predicted, actual = classes[pred[0].argmax(0)], classes[y]print(f'Predicted: "{predicted}", Actual: "{actual}"')

所有的完整代码:

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor# Download training data from open datasets.
training_data = datasets.FashionMNIST(root="data",train=True,download=True,transform=ToTensor(),
)# Download test data from open datasets.
test_data = datasets.FashionMNIST(root="data",train=False,download=True,transform=ToTensor(),
)batch_size = 64# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)for X, y in test_dataloader:print(f"Shape of X [N, C, H, W]: {X.shape}")print(f"Shape of y: {y.shape} {y.dtype}")break# Get cpu, gpu or mps device for training.
device = ("cuda"if torch.cuda.is_available()else "mps"if torch.backends.mps.is_available()else "cpu"
)
print(f"Using {device} device")# Define model
class NeuralNetwork(nn.Module):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.linear_relu_stack = nn.Sequential(nn.Linear(28*28, 512),nn.ReLU(),nn.Linear(512, 512),nn.ReLU(),nn.Linear(512, 10))def forward(self, x):x = self.flatten(x)logits = self.linear_relu_stack(x)return logitsmodel = NeuralNetwork().to(device)
print(model)loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)model.train()for batch, (X, y) in enumerate(dataloader):X, y = X.to(device), y.to(device)# Compute prediction errorpred = model(X)loss = loss_fn(pred, y)# Backpropagationloss.backward()optimizer.step()optimizer.zero_grad()if batch % 100 == 0:loss, current = loss.item(), (batch + 1) * len(X)print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss, correct = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)test_loss += loss_fn(pred, y).item()correct += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss /= num_batchescorrect /= sizeprint(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")epochs = 5
for t in range(epochs):print(f"Epoch {t+1}\n-------------------------------")train(train_dataloader, model, loss_fn, optimizer)test(test_dataloader, model, loss_fn)
print("Done!")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/174213.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构:反射

基本概念 反射中的四个类 Class类 Java文件在被编译之后,生成了.class文件,JVM此时解读.class文件,将其解析为java.lang.Class 对象,在程序运行时每个java文件就最终变成了Class类对象的一个实例。通过反射机制应用这个 实例就…

C# 异步日志记录类,方便下次使用,不用重复造轮子

先定义接口类: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace 异常 {internal interface ILog{Task WriteErrorLog(string message);Task WriteInfoLog(string message);Task W…

MySQL索引下推:提升数据库性能的关键优化技术

文章目录 前言索引下推原理MySQL 基础架构传统查询过程ICP 查询过程 使用场景限制参数配置索引下推开启状态查询索引下推开启和关闭 一些问题只有联合索引才能使用索引下推?下面的查询为什么不走索引下推 参考 前言 大家好,我是 Lorin ,今天…

C语言从文件 D://test.txt 读取字符串,将字符串中所有的大写字符改为小写字母并写回到源文件中

完整代码&#xff1a; /*从文件 D://test.txt 读取字符串&#xff0c;将字符串中所有的大写字母改为小写字母并写回 到源文件中*/ #include<stdio.h>//将字符串中所有的大写字母改为小写字母 void func(char *buff){while (*buff!\0){if (*buff>A&&*buff<…

java基础-数据类型

1、变量 变量就是申请内存来存储值。也就是说&#xff0c;当创建变量的时候&#xff0c;需要在内存中申请空间。 内存管理系统根据变量的类型为变量分配存储空间&#xff0c;分配的空间只能用来储存该类型数据。 因此&#xff0c;通过定义不同类型的变量&#xff0c;可以在内…

【C#学习】button:只显示图片

第一步&#xff1a;设置按钮背景图片&#xff0c;并且图片随按钮大小变化 第二步&#xff1a;设置按钮使之只显示图片 button1.FlatStyle FlatStyle.Flat;//stylebutton1.ForeColor Color.Transparent;//前景button1.BackColor Color.Transparent;//去背景button1.FlatAppe…

破解tomcat密码并上传webshell

tomcat基础认证爆破 暴力破解 进入vulnhub的tomcat8目录&#xff0c;启动环境 由于tomcat密码默认最大尝试错误次数为5次&#xff0c;需要修改server.xml&#xff0c;修改下面字段 failureCount"10000000000" lockOutTime"0"tomcat默认界面&#xff0c;…

MATLAB仿真通信系统的眼图

eyediagram eyediagram(complex(used_i,used_q),1100)

Spring Framework中的依赖注入:构造器注入 vs. Setter注入

前言 构造器注入和Setter注入是依赖注入&#xff08;Dependency Injection&#xff0c;DI&#xff09;中两种常见的方式&#xff0c;用于向一个对象注入其所依赖的其他对象或数值。这两种注入方式有各自的特点和用途。 构造器注入&#xff08;Constructor Injection&#xff…

【LeetCode刷题-滑动窗口】-- 643.子数组最大平均数I

643.子数组最大平均数I 方法&#xff1a;滑动窗口 class Solution {public double findMaxAverage(int[] nums, int k) {int n nums.length;int winSum 0;//先求出第一个窗口的和for(int i 0;i<k;i){winSum nums[i];}//通过遍历求出除了第一窗口的和int res winSum;fo…

抖斗音_快块手直播间获客助手+采集脚本+引流软件功能介绍

软件功能&#xff1a; 支持同时采集多个直播间&#xff0c;弹幕&#xff0c;关*注&#xff0c;礼*物&#xff0c;进直播间&#xff0c;部分用户手*号,粉*丝团采集 不支持采集匿*名直播间 设备需求&#xff1a; 电脑&#xff08;win10系统&#xff09; 文章分享者&#xff1…

28 nacos多环境配置共享

1.3.配置共享 其实微服务启动时&#xff0c;会去nacos读取多个配置文件&#xff0c;例如&#xff1a; [spring.application.name]-[spring.profiles.active].yaml&#xff0c;例如&#xff1a;userservice-dev.yaml [spring.application.name].yaml&#xff0c;例如&#xff…