科研学习|科研软件——有序多分类Logistic回归的SPSS教程!

一、问题与数据

研究者想调查人们对“本国税收过高”的赞同程度:Strongly Disagree——非常不同意,用“0”表示;Disagree——不同意,用“1”表示;Agree--同意,用“2”表示;Strongly Agree--非常同意,用“3”表示。

另外,研究者也调查了一些其它情况,包括:是否是“雇主”(biz_owner:Yes——是,用“0”表示;No——否,用“1”表示)、年龄(age)和党派(politics:Lib——党派1,用“1”表示;Con——党派2,用“2”表示;Lab——党派3,用“3”表示)。部分数据如下图:

二、对问题的分析

使用有序Logistic进行回归分析时,需要考虑4个假设。

  • 假设1:因变量唯一,且为有序多分类变量,如城市综合竞争力等级可以分为高、中、低;某病的治疗效果分为痊愈、有效、无效等。
  • 假设2:存在一个或多个自变量,可为连续、有序多分类或无序分类变量。
  • 假设3:自变量之间无多重共线性。
  • 假设4:模型满足“比例优势”假设。意思是无论因变量的分割点在什么位置,模型中各个自变量对因变量的影响不变,也就是自变量对因变量的回归系数与分割点无关。

有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归,例如本例中因变量“本国的税收过高”的赞同程度有4个等级,分析时拆分为三个二元Logistic回归,分别为(0 vs 1+2+3) 、(0+1 vs 2+3)、(0+1+2 vs 3),均是较低级与较高级对比。

在有序多分类Logistic回归中,假设几个二元Logistic回归中,自变量的系数相等,仅常数项不等,结果也只输出一组自变量的系数。因此,有序多分类的Logistic回归模型,必须对自变量系数相等的假设(即“比例优势”假设)进行检验(又称平行线检验)。如果不满足该假设,则考虑使用无序多分类Logistic回归。

三、前期数据处理

对假设进行验证前,我们需要将分类变量设置成哑变量。

1. 为什么要设计哑变量

若直接将分类变量纳入Logistic回归方程,则软件会将分类变量按连续变量处理。例如,如果把性别按“1”——男、“2”——女进行编码,然后直接把性别纳入方程,方程会认为“女”是“男”的2倍。为了解决这个问题,需要用一系列的二分类变量“是”或“否”来表示原始的分类变量,这些新的二分类变量被称为“哑变量”。

在SPSS软件的二项Logistic回归模型中,将分类变量选入categorical,软件会自动设置一系列的哑变量。由于验证假设3(自变量之间无多重共线性)需要通过线性回归实现,而在线性回归中,就需要手动设置哑变量。因此,这里需要先手动设置哑变量。

2. 设置哑变量的思路

哑变量的数目是分类变量类别数减一。本例中,党派1、党派2和党派3的原始编码为1、2和3。设置哑变量时,需要对党派1和党派2进行重新编码。

建立新变量Lib(党派1),若调查对象选了党派1,则Lib编为“1”,代表是;若未选党派1,则Lib编为“0”,代表否。同样,建立新变量Con(党派2),将是否选党派2编为“1”或“0”。此时,若既未选党派1,又未选党派2,则两个新变量Lib和Con的编码都为“0”,代表党派3。此时,党派3在模型中是参考类别(Reference)。

3. 在SPSS中设置哑变量

(1) 首先,先创建新变量“Con”,在主菜单下选择Transform→Recode into Different Variables... ,如下图:

(2) 在Recode into Different Variables对话框中,将politics选入右侧Numeric Variable-->Output Variable下,在右侧Output Variable中填写“Con”。点击Change→Old and New Values。

(3) 出现Recode into Different Variables: Old and New Values对话框,在左侧的Old Value下的Value中填入2,在右侧的New Value下的Value中填入1,点击Add。

(4) 将其它值变为“0”:左侧点击All other values,在右侧Value中填入“0”,点击Add→Continue。

(5) 如果数据中有缺失值,点击左侧System-missing,右侧点击System-missing→Add,保持缺失值:

设置得到的结果如下图:

本例中没有缺失值,可省略这一步。

(6) 继续创建新变量“Lib”,与以上步骤相似。两个变量创建完成后,点击变量视图,可以看到在最右侧已经生成了两个新变量“Con”和“Lib”,如下图:

四、对假设的判断

假设1-2都是对研究设计的假设,需要研究者根据研究设计进行判断,所以这里主要对数据的假设3-4进行检验。

1. 检验假设3:自变量之间无多重共线性

(1) 在主菜单点击Analyze→Regression→Linear...

(2) 将tax_too_high选入Dependent,将biz_owner、age、Con、Lib选入Independent(s)。

(3) 点击Statistics,出现Linear Regression:Statistics对话框,点击Collinearity diagnostics→Continue→OK。

结果如下图:

如果容忍度(Tolerance)小于0.1或方差膨胀因子(VIF)大于10,则表示有共线性存在。

本例中,容忍度均远大于0.1,方差膨胀因子均小于10,所以不存在多重共线性。如果数据存在多重共线性,则需要用复杂的方法进行处理,其中最简单的方法是剔除引起共线性的因素之一,剔除哪一个因素可以基于理论依据。

2. 检验假设4:模型满足“比例优势”假设

“比例优势”假设可以在后面结果部分的“平行线检验”中看到。

五、SPSS操作

SPSS中,可以通过两个过程实现有序Logistic回归。分别是Analyze → Regression → Ordinal...和Analyze → Generalized Linear Models → Generalized Linear Models...。

其中,Analyze → Regression → Ordinal模块,可以检验 “比例优势”假设,但无法给出OR值和95%CI。而Analyze → Generalized Linear Models → Generalized Linear Models模块可以给出OR值和95%CI,但无法检验“比例优势”假设。

这里,我们主要介绍Analyze → Regression → Ordinal过程。

(1) 在主菜单点击Analyze→Regression→Ordinal...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/174922.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用PHP编写采集药品官方数据的程序

目录 一、引言 二、程序设计和实现 1、确定采集目标 2、使用PHP的cURL库进行数据采集 3、解析JSON数据 4、数据处理和存储 5、数据验证和清理 6、数据输出和可视化 7、数据分析和挖掘 三、注意事项 1、合法性原则 2、准确性原则 3、完整性原则 4、隐私保护原则 …

【vue】AntDV组件库中a-upload实现文件上传:

文章目录 一、文档&#xff1a;二、使用(以Jeecg为例)&#xff1a;【1】template&#xff1a;【2】script&#xff1a; 三、效果图&#xff1a; 一、文档&#xff1a; Upload 上传–Ant Design Vue 二、使用(以Jeecg为例)&#xff1a; 【1】template&#xff1a; <a-uploa…

Unity可视化Shader工具ASE介绍——10、ASE实现曲面细分

阿赵的Unity可视化Shader工具ASE介绍目录   大家好&#xff0c;我是阿赵。   之前介绍地面交互的时候&#xff0c;介绍了曲面细分着色器的使用。这个过程&#xff0c;在ASE里面也是可以实现的。关于曲面细分的具体作用&#xff0c;这里就不再重复&#xff0c;如果有兴趣了解…

Maven 插件统一修改聚合工程项目版本号

目录 引言直接修改 pom.xml 的版本号的问题Maven 插件修改版本号开源项目微服务商城项目前后端分离项目 引言 在Maven项目中&#xff0c;我们通常有两种常见的方式来修改版本号&#xff1a;直接在pom.xml文件中手动编辑和利用Maven插件进行版本号调整。 本文将比较这两种修改…

Istio学习笔记- 服务网格

Istio 服务网格 参考&#xff1a;Istio / Istio 服务网格 Istio 使用功能强大的 Envoy 服务代理扩展了 Kubernetes&#xff0c;以建立一个可编程的、可感知的应用程序网络。Istio 与 Kubernetes 和传统工作负载一起使用&#xff0c;为复杂的部署带来了标准的通用流量管理、遥…

[工业自动化-21]:西门子S7-15xxx编程 - 软件编程 - 如何快速看懂PLC梯形图?

目录 预备&#xff1a;电气图 1. 电路图 2. 电气图 一、梯形图概述 1.1 什么是梯形图 1.2 梯形图的作用 二、梯形图中的主要元素 三、梯形图的程序执行 3.1 梯形图扫描的原则 3.2 梯形图执行顺序 3.3 梯形图扫描 预备&#xff1a;电气图 1. 电路图 电路组成&#x…

​软考-高级-系统架构设计师教程(清华第2版)【第4章 信息安全技术基础知识(P160~189)-思维导图】​

软考-高级-系统架构设计师教程&#xff08;清华第2版&#xff09;【第4章 信息安全技术基础知识&#xff08;P160~189&#xff09;-思维导图】 课本里章节里所有蓝色字体的思维导图

机器视觉系统中工业光源选型避坑指南

光源的作用&#xff1a; 照亮目标&#xff0c;提高目标亮度 形成有利于图像处理的效果&#xff0c;提升对比度 克服环境光干扰&#xff0c;保证图像的稳定性 光源的选型思路&#xff1a; ①颜色 ②外形  ③打光方式  ④亮度 选颜色 通过选择合适颜色的光源&#xff0c;…

WebSocket真实项目总结

websocket websocket是什么? websocket是一种网络通讯协议。 websocket 是HTML5开始提供的一种在单个TCP链接上进行全双工通讯的协议。 为什么需要websocket? 初次接触websocket&#xff0c;都会带着疑惑去学习&#xff0c;既然已经有了HTTP协议&#xff0c;为什么还需要另一…

Jenkins中强制停止停不下来的job

# Script console 执行脚本 Jenkins 的提供了 script console 的功能&#xff0c;允许你写一些脚本&#xff0c;来调度 Jenkins 执行一些任务。 我们就可以利用 script console 来强制停止 job 执行。 首先进入 Jenkins 的 script console 页面&#xff1a; script console 路…

C# datagridView 控件使用心得

首先本人的需求是&#xff0c;通过UI编辑一个表格文件&#xff0c;然后将其存储起来。 同时也可以对其进行载入,话不多说先上图片 dataGridView1 的初始化&#xff0c;这个控件的初始化可以使用UI界面的设置&#xff0c;也可以使用程序&#xff1a; Column1 new System.Window…

Python武器库开发-flask篇之flask框架的安装(二十一)

Flask介绍 Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架&#xff0c;对于Werkzeug本质是Socket服务端&#xff0c;其用于接收http请求并对请求进行预处理&#xff0c;然后触发Flask框架&#xff0c;开发人员基于Flask框架提供的功能对请求进…