ISP 处理流程

#灵感# 摆烂时间太长了,感觉知识忘光光了。重新学习,常学常新。

因为公司文档都不让摘抄、截取,所以内容是工作的一些自己记录和网络内容,不对的欢迎批评指正。

1、ISP概述

ISP是Image Signal Processor 的简称,也就是图像信号处理器。

ISP内部包含 CPU、SUP IP、IF 等设备,事实上,可以认为 ISP 是一个 SOC(system of chip),可以运行各种算法程序,实时处理图像信号。

ISP 工作机制:

lens 将光信号投射到sensor 的感光区域后,sensor 经过光电转换,将Bayer 格式的原始图像送给ISP,ISP 经过算法处理,输出RGB空间域的图像给后端的视频采集单元。在这个过程中,ISP通过运行在其上的firmware(固件)和ISP逻辑,从而对lens 和sensor 进行相应控制,进而完成自动光圈、自动曝光、自动白平衡等功能。

ISP 由ISP逻辑及运行在其上的Firmware组成,逻辑单元除了完成一部分算法处理外,还可以统计出当前图像的实时信息。Firmware 通过获取ISP 逻辑的图像统计信息,重新计算,反馈控制lens、sensor 和ISP 逻辑,以达到自动调节图像质量的目的。

PQ Tools 工具通过网口或者串口完成对ISP 的在线图像质量调节。(IPC和UVC一般是在线调整,手机一般是先采图,再离线调节)

2、ISP 流程

先看一个手机流程

再看一个MTK的仿真流程:

再看一个流程:

再来一个流程:(我的文章,就多贴几个流程,方便对比)

好了,总结以上4个流程,基本是:

DPC——RNR——BLC(OB)——(DGN)——LSC——AWB——LTM——DMS(RNR)——CCM——gamma——color conversion——YNR——EE(CNR)——color其它特殊处理。

(MTK调了两年,所以我以MTK的流程为标准,且目前的自研ISP流程和MTK 几乎一样)。

ISP流程总共有两个数据转换节点,涉及三个数据域raw——>RGB——>YUV:

1、raw(bayer)数据转换rgb数据

sensor捕获景物的光信号强度,输出图像是黑白的,没有色彩信息。CMOS上的R、G、B三色的滤光片,将图像数据分成RGB三种分量而形成的Bayer raw图。(Bayer格式的RAW数据包含了2个G、1个R和1个B,一般格式有GBRG、GRBG、BGGR、RGGB多种)Bayer的数据是每个像素点只包含了一种色彩信息,呈现了一种“马赛克”的样子,我们需要将RGB数据结合在一个像素点中展现,消除马赛克的样子,也就是这个过程就是 - Demosaic。

demosaic 算法举例:红色像素区域为例,我们需要的是丢失了的绿色与蓝色的值。插值法可以通过分析与这个红色像素相邻的像素计算出这两个值。比如算法发现该区域像素绿色像素均含有大量电荷,但蓝色像素电荷数为零,所以可以推断出,这个红色像素实际上是黄色的。

2、RGB 到YUV的色彩空间转换

原因:

(1)为何会有色彩空间的转换呢?我们图像的采集和处理在RGB空间就已经有很好的效果了,但是显示和信号的处理多数在YUV空间下进行。显示主要指的是电视,使用YUV格式可以兼容黑白电视和彩色电视。

(2)色彩空间转换这个模块将RGB 转换为 YUV444, 然后在YUV 色彩空间上进行后续的彩色噪声去除、 边缘增强等, 也为后续输出转换为jpeg 图片提供方便。在YUV 家族中,YCbCr 是在计算机系统中应用最多的成员,JPEG、MPEG 均采用此格式。 一般人们所讲的YUV 大多是指YCbCr。YCbCr有许多取样格式,如 4∶4∶4,4∶2∶2, 4∶1∶1和 4∶2∶0。(NV12 和 NV21 属于 YUV420 格式。)

-----------------------------------------一个发散问题  start   ------------------------------------------------

其中gamma模块,不同的曲线指数会影响CC的颜色还原程度,理应先调整gamma,再去调整CCM模块。但是以上几个流程中,gamma却都位于CCM 模块之后。

大概的解释Color Constancy=AWB+CCM。Gamma校正就是对图像的灰度进行非线性处理,这个曲线类似于指数关系,最终处理后图像灰度是类似人眼的非线性效果,这个指数就是Gamma。

Gamma矫正会影响到整个图像的对比度。对比度越高,整个图像的通透性越好,让人眼视觉效果更加明显。Gamma矫正也会影响到图像的色彩,对比度越高,整个图像的色彩饱和度也越高。

CC是在RGB域进行的一种映射,这个映射是sensor输出数据——>人眼真实感受值。为了实现这个映射的具体的映射方式,常用的一种方法是标定法。即利用标定好的某种颜色的标准值(比如color checker 色卡)和sensor输出数据做差,来求得CC对该颜色需要做的映射。

结论:使用工具校准时,需要填入饱和度,而gamma 影响饱和度,所以校准CC时要输入使用的gamma。而实际上为了主观表现(亮度、对比度或者噪声),CC校准后gamma 还会进行调整,所以gamma 属于CC的辅助模块,而不是必备模块。gamma 和CC的位置在ISP pline中就没有强相关性。

-----------------------------------------一个发散问题  end  ------------------------------------------------

3、ISP 问题来源

再回顾一下流程:DPC——RNR——BLC(OB)——(DGN)——LSC——AWB——LTM——DMS(RNR)——CCM——gamma——color conversion——YNR——EE(CNR)——color其它特殊处理。

各模块解释:

[转]-- ISP(图像信号处理)算法概述、工作原理、架构、处理流程 - 知乎 (zhihu.com)

问题来源列举:

(1)OB(BLC):物理器件不可能是理想,所以会产生暗电流,出现不合适的black level。(另一种奇怪的解释:实际AD芯片(模数转换芯片)的精度可能无法将电压值很小的一部分转换出来,因此,sensor厂家一般会在AD的输入之前加上一个固定的偏移量,使输出的pixel value在n(每家不同)~255之间,目的是为了让暗部的细节完全保留,当然加了之后高光信号溢出,会损失一些亮部细节。当ISP 接收到sensor 的数据时,就要通过标定的方式,确定这个偏移量的具体值。后续的 ISP处理模块,需要先减掉该偏移值,才能保证数据的线性一致性。)

(2)DPC:坏点一般是由于制造工艺的问题使得个别pixel 不良造成的。它是指某个像素点与周围像素有较大的差异。一般是在全黑的环境下出现白点或者高亮的环境下出现黑点。

(3)LSC:由于镜头本身就是一个凸透镜,Lens的光学特性——凸透镜原理,中心的感光必然比周边多,通光量从中心到边角依次较少,导致图像中间亮,四周偏暗; 第二,当Lens CRA(主光线角度,Chief ray angle)小于 Sensor CRA(microlens)导致sensor传感器边缘像素收集光能衰减更大(CRA矫正改善),因此导致传感器中心像素收集光能大于边缘像素,加剧Luma Shading。

color shading :各种颜色的波长不同,经过透镜折射后,折射的角度也不一样,就会造成color Shading的现象,另外由于CRA的原因也会导致shading现象。(当入射光线的CRA角度超过sensor 的CRA时,就会导致经过R-filter的光线,照到了G像素上,造成像素之间的串扰,出现color shading;)

CRA选择:lens CRA 大于 Sensor CRA 会出现明显的 color shading,当 lens CAR 小于 Sensor CRA 会出现 luma shading。建议是选择 lens CRA 小于 sensor CRA 的配置。

(4)NR:sensor在输出图像的时候就会带有一些噪声,原始RAW图经过ISP处理后,会引入一些新的噪声,或者对原有噪声进行了放大。

(5)AWB:人眼具有色彩恒常性,sensor并没有人眼这么强大,为了模拟人眼的成像效果,保证任何色温场景下白色都是白色。(视锥细胞会根据周围环境光的情况独立地调整颜色通道的敏感度,如果一个物体表面对光线的反射特性不随光照条件而变化(除了变色龙外大多数物体都满足),那么该表面的光亮度与环境光亮度的比值也恒等,数值上等于视锥细胞的三刺激值与白场响应的比值,因此该表面在各种光照下激发的颜色知觉都(基本)相同。这就是颜色恒常的原理。)

(6)DMS:从sensor出来的图是通过cmos上透红色、 透绿色和透蓝色的滤镜阵列单元分别接收红(Red)、 绿(Green)、 蓝(Blue)三个分量的信息,将三个分量最终合成一个彩色信息。

(7)gamma: 摄像机感光与输入光强呈线性关系, 而人眼对外界光源的感光值与输入光强呈指数关系。为方便人眼辨识图像, 需要将摄像机采集的图像进行gamma 矫正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/175271.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

nodejs+vue公益帮学网站的设计与实现-微信小程序-安卓-python-PHP-计算机毕业设计

在当今高度发达的信息中,信息管理改革已成为一种更加广泛和全面的趋势。为确保中国经济的持续发展, 如何用方便快捷的方式使管理者在广阔的数据海洋里面查询、存储、管理和共享有效的数据信息,对我们的学习,工作和生活具有重要的现…

视频推拉流EasyDSS直播点播平台获取指定时间快照的实现方法

视频推拉流直播点播系统EasyDSS平台,可提供流畅的视频直播、点播、视频推拉流、转码、管理、分发、录像、检索、时移回看等功能,可兼容多操作系统,在直播点播领域具有广泛的场景应用。为了便于用户集成、调用与二次开发。 今天我们来介绍下在…

C#中.NET Framework4.8 Windows窗体应用通过EF访问数据库并对数据库追加、删除记录

目录 一、应用程序设计 二、应用程序源码 三、生成效果 前文作者发布了在.NET Framework4.8 控制台应用中通过EF访问已有数据库,事实上在.NET Framework4.8 Windows窗体应用中通过EF访问已有数据库也是一样的。操作方法基本一样,数据库EF模型和上下文…

STM32 I2C详解

STM32 I2C详解 I2C简介 I2C(Inter IC Bus)是由Philips公司开发的一种通用数据总线 两根通信线: SCL(Serial Clock)串行时钟线,使用同步的时序,降低对硬件的依赖,同时同步的时序稳定…

【kafka】windows安装启动

1.zookeeper的安装与启动 快速打开window powershell: windowx,选 2.kafka下载 —注意kafka和zookeeper需要版本匹配 安装路径 注意,kafka安装目录不能有空格。文件下载到: D:\Program_Files\kafka_2.12-3.6.0新建logs文件 修改c…

JavaScript中的原型和原型链

给大家推荐一个实用面试题库 1、前端面试题库 (面试必备) 推荐:★★★★★ 地址:web前端面试题库 原型和原型链是JavaScript中一个重要且常常被误解的概念。它们在理解对象、继承和属性查找时扮演着关键的角色。 1…

基于单片机的农田智能驱鼠装置(论文+源码)

1.系统设计 在基于单片机的农田智能驱鼠装置设计中,分为四个模块电源模块、感应模块、控制模块和音频模块。电源模块为整个系统提供5v的直流电源,支撑驱鼠器的整体运作。热释电红外感应模块用来感应鼠类的入侵。控制模块则采用STC89C52单片机编程进行时…

unity 使用Vuforia扫描实体物体交互

文章目录 前言一、Vuforia是什么?二、Unity导入Vuforia1.去Unity - Windows – Asset Store,搜vuforia engine,添加到我的资源2.从 Unity 的菜单 Assets -> Import package -> Custom Package 导入脚本,添加 Vuforia Engine…

【python 生成器 面试必备】yield关键字,协程必知必会系列文章--自己控制程序调度,体验做上帝的感觉 2

这篇文章要解决的问题:How to Pass Value to Generators Using the “yield” Expression in Python ref:https://python.plainenglish.io/yield-python-part-ii-e93abb619a16 1.如何传值 yield 是一个表达式!!!! yi…

excel中的OFFSET函数

介绍 OFFSET函数是确定从基点出发移动后的引用区域。它有5个参数: 第1个参数是引用的参考基点区域第2个参数是移动的行数,正数代表向下移动的行数,负数代表向上移动的行数第3个参数是移动的列数,正数代表向右移动的列数&#xf…

使用validator实现枚举类型校验

使用validator实现枚举类型校验 前言: 在前端调用后端接口传递参数的过程中,我们往往需要对前端传递过来的参数进行校验,比如说我们此时需要对用户的状态进行更新,而用户的状态只有正常和已删除,并且是在代码中通过枚…

Android---动态权限适配问题

在 Android6.0,即 API 23 之前,App 需要的权限都会在安装阶段向用户展示,而在 App 运行期间不需要动态判断权限是否已申请。从 6.0 之后的版本开始,Android 系统做了一次大的改动。对于部分权限,App 需要在代码中动态申…