第三天课程 RabbitMQ

RabbitMQ

1.初识MQ

1.1.同步和异步通讯

微服务间通讯有同步和异步两种方式:

同步通讯:就像打电话,需要实时响应。

异步通讯:就像发邮件,不需要马上回复。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。

1.1.1.同步通讯

我们之前学习的Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

总结:

同步调用的优点:

  • 时效性较强,可以立即得到结果

同步调用的问题:

  • 耦合度高
  • 性能和吞吐能力下降
  • 有额外的资源消耗
  • 有级联失败问题

1.1.2.异步通讯

异步调用则可以避免上述问题:

我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。

在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。

订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。

为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。

好处:

  • 吞吐量提升:无需等待订阅者处理完成,响应更快速

  • 故障隔离:服务没有直接调用,不存在级联失败问题

  • 调用间没有阻塞,不会造成无效的资源占用

  • 耦合度极低,每个服务都可以灵活插拔,可替换

  • 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件

缺点:

  • 架构复杂了,业务没有明显的流程线,不好管理
  • 需要依赖于Broker的可靠、安全、性能

好在现在开源软件或云平台上 Broker 的软件是非常成熟的,比较常见的一种就是我们今天要学习的MQ技术。

1.2.技术对比:

MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。

比较常见的MQ实现:

  • ActiveMQ
  • RabbitMQ
  • RocketMQ
  • Kafka

几种常见MQ的对比:

RabbitMQActiveMQRocketMQKafka
公司/社区RabbitApache阿里Apache
开发语言ErlangJavaJavaScala&Java
协议支持AMQP,XMPP,SMTP,STOMPOpenWire,STOMP,REST,XMPP,AMQP自定义协议自定义协议
可用性一般
单机吞吐量一般非常高
消息延迟微秒级毫秒级毫秒级毫秒以内
消息可靠性一般一般

追求可用性:Kafka、 RocketMQ 、RabbitMQ

追求可靠性:RabbitMQ、RocketMQ

追求吞吐能力:RocketMQ、Kafka

追求消息低延迟:RabbitMQ、Kafka

2.快速入门

2.1.安装RabbitMQ

安装RabbitMQ,参考课前资料:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

MQ的基本结构:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

RabbitMQ中的一些角色:

  • publisher:生产者
  • consumer:消费者
  • exchange个:交换机,负责消息路由
  • queue:队列,存储消息
  • virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离

2.2.RabbitMQ消息模型

RabbitMQ官方提供了5个不同的Demo示例,对应了不同的消息模型:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.3.导入Demo工程

课前资料提供了一个Demo工程,mq-demo:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

导入后可以看到结构如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

包括三部分:

  • mq-demo:父工程,管理项目依赖
  • publisher:消息的发送者
  • consumer:消息的消费者

2.4.入门案例

简单队列模式的模型图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:

  • publisher:消息发布者,将消息发送到队列queue
  • queue:消息队列,负责接受并缓存消息
  • consumer:订阅队列,处理队列中的消息

2.4.1.publisher实现

思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 发送消息
  • 关闭连接和channel

代码实现:

package cn.itcast.mq.helloworld;import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import org.junit.Test;import java.io.IOException;
import java.util.concurrent.TimeoutException;public class PublisherTest {@Testpublic void testSendMessage() throws IOException, TimeoutException {// 1.建立连接ConnectionFactory factory = new ConnectionFactory();// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码factory.setHost("192.168.150.101");factory.setPort(5672);factory.setVirtualHost("/");factory.setUsername("itcast");factory.setPassword("123321");// 1.2.建立连接Connection connection = factory.newConnection();// 2.创建通道ChannelChannel channel = connection.createChannel();// 3.创建队列String queueName = "simple.queue";channel.queueDeclare(queueName, false, false, false, null);// 4.发送消息String message = "hello, rabbitmq!";channel.basicPublish("", queueName, null, message.getBytes());System.out.println("发送消息成功:【" + message + "】");// 5.关闭通道和连接channel.close();connection.close();}
}

2.4.2.consumer实现

代码思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 订阅消息

代码实现:

package cn.itcast.mq.helloworld;import com.rabbitmq.client.*;import java.io.IOException;
import java.util.concurrent.TimeoutException;public class ConsumerTest {public static void main(String[] args) throws IOException, TimeoutException {// 1.建立连接ConnectionFactory factory = new ConnectionFactory();// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码factory.setHost("192.168.150.101");factory.setPort(5672);factory.setVirtualHost("/");factory.setUsername("itcast");factory.setPassword("123321");// 1.2.建立连接Connection connection = factory.newConnection();// 2.创建通道ChannelChannel channel = connection.createChannel();// 3.创建队列String queueName = "simple.queue";channel.queueDeclare(queueName, false, false, false, null);// 4.订阅消息channel.basicConsume(queueName, true, new DefaultConsumer(channel){@Overridepublic void handleDelivery(String consumerTag, Envelope envelope,AMQP.BasicProperties properties, byte[] body) throws IOException {// 5.处理消息String message = new String(body);System.out.println("接收到消息:【" + message + "】");}});System.out.println("等待接收消息。。。。");}
}

2.5.总结

基本消息队列的消息发送流程:

  1. 建立connection

  2. 创建channel

  3. 利用channel声明队列

  4. 利用channel向队列发送消息

基本消息队列的消息接收流程:

  1. 建立connection

  2. 创建channel

  3. 利用channel声明队列

  4. 定义consumer的消费行为handleDelivery()

  5. 利用channel将消费者与队列绑定

3.SpringAMQP

SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。

SpringAmqp的官方地址:https://spring.io/projects/spring-amqp

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

SpringAMQP提供了三个功能:

  • 自动声明队列、交换机及其绑定关系
  • 基于注解的监听器模式,异步接收消息
  • 封装了RabbitTemplate工具,用于发送消息

3.1.Basic Queue 简单队列模型

在父工程mq-demo中引入依赖

<!--AMQP依赖,包含RabbitMQ-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

3.1.1.消息发送

首先配置MQ地址,在publisher服务的application.yml中添加配置:

spring:rabbitmq:host: 192.168.150.101 # 主机名port: 5672 # 端口virtual-host: / # 虚拟主机username: itcast # 用户名password: 123321 # 密码

然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:

package cn.itcast.mq.spring;import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {@Autowiredprivate RabbitTemplate rabbitTemplate;@Testpublic void testSimpleQueue() {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, spring amqp!";// 发送消息rabbitTemplate.convertAndSend(queueName, message);}
}

3.1.2.消息接收

首先配置MQ地址,在consumer服务的application.yml中添加配置:

spring:rabbitmq:host: 192.168.150.101 # 主机名port: 5672 # 端口virtual-host: / # 虚拟主机username: itcast # 用户名password: 123321 # 密码

然后在consumer服务的cn.itcast.mq.listener包中新建一个类SpringRabbitListener,代码如下:

package cn.itcast.mq.listener;import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;@Component
public class SpringRabbitListener {@RabbitListener(queues = "simple.queue")public void listenSimpleQueueMessage(String msg) throws InterruptedException {System.out.println("spring 消费者接收到消息:【" + msg + "】");}
}

3.1.3.测试

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息

3.2.WorkQueue

Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。

此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。

3.2.1.消息发送

这次我们循环发送,模拟大量消息堆积现象。

在publisher服务中的SpringAmqpTest类中添加一个测试方法:

/*** workQueue* 向队列中不停发送消息,模拟消息堆积。*/
@Test
public void testWorkQueue() throws InterruptedException {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, message_";for (int i = 0; i < 50; i++) {// 发送消息rabbitTemplate.convertAndSend(queueName, message + i);Thread.sleep(20);}
}

3.2.2.消息接收

要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:

@RabbitListener(queues = "simple.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(20);
}@RabbitListener(queues = "simple.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(200);
}

注意到这个消费者sleep了1000秒,模拟任务耗时。

3.2.3.测试

启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。

可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。

3.2.4.能者多劳

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:

spring:rabbitmq:listener:simple:prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息

3.2.5.总结

Work模型的使用:

  • 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理
  • 通过设置prefetch来控制消费者预取的消息数量

3.3.发布/订阅

发布订阅的模型如图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:

  • Publisher:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给X(交换机)
  • Exchange:交换机,图中的X。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange有以下3种类型:
    • Fanout:广播,将消息交给所有绑定到交换机的队列
    • Direct:定向,把消息交给符合指定routing key 的队列
    • Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列
  • Consumer:消费者,与以前一样,订阅队列,没有变化
  • Queue:消息队列也与以前一样,接收消息、缓存消息。

Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!

3.4.Fanout

Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在广播模式下,消息发送流程是这样的:

  • 1) 可以有多个队列
  • 2) 每个队列都要绑定到Exchange(交换机)
  • 3) 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定
  • 4) 交换机把消息发送给绑定过的所有队列
  • 5) 订阅队列的消费者都能拿到消息

我们的计划是这样的:

  • 创建一个交换机 itcast.fanout,类型是Fanout
  • 创建两个队列fanout.queue1和fanout.queue2,绑定到交换机itcast.fanout

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.4.1.声明队列和交换机

Spring提供了一个接口Exchange,来表示所有不同类型的交换机:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在consumer中创建一个类,声明队列和交换机:

package cn.itcast.mq.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class FanoutConfig {/*** 声明交换机* @return Fanout类型交换机*/@Beanpublic FanoutExchange fanoutExchange(){return new FanoutExchange("itcast.fanout");}/*** 第1个队列*/@Beanpublic Queue fanoutQueue1(){return new Queue("fanout.queue1");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);}/*** 第2个队列*/@Beanpublic Queue fanoutQueue2(){return new Queue("fanout.queue2");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);}
}

3.4.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testFanoutExchange() {// 队列名称String exchangeName = "itcast.fanout";// 消息String message = "hello, everyone!";rabbitTemplate.convertAndSend(exchangeName, "", message);
}

3.4.3.消息接收

在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:

@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}

3.4.4.总结

交换机的作用是什么?

  • 接收publisher发送的消息
  • 将消息按照规则路由到与之绑定的队列
  • 不能缓存消息,路由失败,消息丢失
  • FanoutExchange的会将消息路由到每个绑定的队列

声明队列、交换机、绑定关系的Bean是什么?

  • Queue
  • FanoutExchange
  • Binding

3.5.Direct

在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在Direct模型下:

  • 队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key)
  • 消息的发送方在 向 Exchange发送消息时,也必须指定消息的 RoutingKey
  • Exchange不再把消息交给每一个绑定的队列,而是根据消息的Routing Key进行判断,只有队列的Routingkey与消息的 Routing key完全一致,才会接收到消息

案例需求如下

  1. 利用@RabbitListener声明Exchange、Queue、RoutingKey

  2. 在consumer服务中,编写两个消费者方法,分别监听direct.queue1和direct.queue2

  3. 在publisher中编写测试方法,向itcast. direct发送消息

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.5.1.基于注解声明队列和交换机

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue1"),exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){System.out.println("消费者接收到direct.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue2"),exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){System.out.println("消费者接收到direct.queue2的消息:【" + msg + "】");
}

3.5.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testSendDirectExchange() {// 交换机名称String exchangeName = "itcast.direct";// 消息String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "red", message);
}

3.5.3.总结

描述下Direct交换机与Fanout交换机的差异?

  • Fanout交换机将消息路由给每一个与之绑定的队列
  • Direct交换机根据RoutingKey判断路由给哪个队列
  • 如果多个队列具有相同的RoutingKey,则与Fanout功能类似

基于@RabbitListener注解声明队列和交换机有哪些常见注解?

  • @Queue
  • @Exchange

3.6.Topic

3.6.1.说明

Topic类型的ExchangeDirect相比,都是可以根据RoutingKey把消息路由到不同的队列。只不过Topic类型Exchange可以让队列在绑定Routing key 的时候使用通配符!

Routingkey 一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: item.insert

通配符规则:

#:匹配一个或多个词

*:匹配不多不少恰好1个词

举例:

item.#:能够匹配item.spu.insert 或者 item.spu

item.*:只能匹配item.spu

图示:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

解释:

  • Queue1:绑定的是china.# ,因此凡是以 china.开头的routing key 都会被匹配到。包括china.news和china.weather
  • Queue2:绑定的是#.news ,因此凡是以 .news结尾的 routing key 都会被匹配。包括china.news和japan.news

案例需求:

实现思路如下:

  1. 并利用@RabbitListener声明Exchange、Queue、RoutingKey

  2. 在consumer服务中,编写两个消费者方法,分别监听topic.queue1和topic.queue2

  3. 在publisher中编写测试方法,向itcast. topic发送消息

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.6.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

/*** topicExchange*/
@Test
public void testSendTopicExchange() {// 交换机名称String exchangeName = "itcast.topic";// 消息String message = "喜报!孙悟空大战哥斯拉,胜!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}

3.6.3.消息接收

在consumer服务的SpringRabbitListener中添加方法:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue1"),exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),key = "china.#"
))
public void listenTopicQueue1(String msg){System.out.println("消费者接收到topic.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue2"),exchange = @Exchange(name = "itcast.topic", type = ExchangeTypes.TOPIC),key = "#.news"
))
public void listenTopicQueue2(String msg){System.out.println("消费者接收到topic.queue2的消息:【" + msg + "】");
}

3.6.4.总结

描述下Direct交换机与Topic交换机的差异?

  • Topic交换机接收的消息RoutingKey必须是多个单词,以 **.** 分割
  • Topic交换机与队列绑定时的bindingKey可以指定通配符
  • #:代表0个或多个词
  • *:代表1个词

3.7.消息转换器

之前说过,Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:

  • 数据体积过大
  • 有安全漏洞
  • 可读性差

我们来测试一下。

3.7.1.测试默认转换器

我们修改消息发送的代码,发送一个Map对象:

@Test
public void testSendMap() throws InterruptedException {// 准备消息Map<String,Object> msg = new HashMap<>();msg.put("name", "Jack");msg.put("age", 21);// 发送消息rabbitTemplate.convertAndSend("simple.queue","", msg);
}

停止consumer服务

发送消息后查看控制台:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

3.7.2.配置JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

在publisher和consumer两个服务中都引入依赖:

<dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId><version>2.9.10</version>
</dependency>

配置消息转换器。

在启动类中添加一个Bean即可:

@Bean
public MessageConverter jsonMessageConverter(){return new Jackson2JsonMessageConverter();
}

还会把字节反序列化为Java对象。

[外链图片转存中…(img-3qscSmHo-1699967566495)]

只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:

  • 数据体积过大
  • 有安全漏洞
  • 可读性差

我们来测试一下。

3.7.1.测试默认转换器

我们修改消息发送的代码,发送一个Map对象:

@Test
public void testSendMap() throws InterruptedException {// 准备消息Map<String,Object> msg = new HashMap<>();msg.put("name", "Jack");msg.put("age", 21);// 发送消息rabbitTemplate.convertAndSend("simple.queue","", msg);
}

停止consumer服务

发送消息后查看控制台:

[外链图片转存中…(img-kvXdWKmF-1699967566496)]

3.7.2.配置JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

在publisher和consumer两个服务中都引入依赖:

<dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId><version>2.9.10</version>
</dependency>

配置消息转换器。

在启动类中添加一个Bean即可:

@Bean
public MessageConverter jsonMessageConverter(){return new Jackson2JsonMessageConverter();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/175879.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python数据结构与算法-02_数组和列表

线性结构 本节我们从最简单和常用的线性结构开始&#xff0c;并结合 Python 语言本身内置的数据结构和其底层实现方式来讲解。 虽然本质上数据结构的思想是语言无关的&#xff0c;但是了解 Python 的实现方式有助于你避免一些坑。 我们会在代码中注释出操作的时间复杂度。 数…

LeetCode【923】三数之和的多种可能性

题目&#xff1a; 思路&#xff1a; https://www.jianshu.com/p/544cbb422300 代码&#xff1a; int threeSumMulti(vector<int>& A, int target) {//Leetcode923:三数之和的多钟可能//initialize some constint kMod 1e9 7;int kMax 100;//calculate frequenc…

亚马逊云AI大语言模型应用下的创新Amazon Transcribe的使用

Transcribe简介 语音识别技术&#xff0c;也被称为自动语音识别&#xff08;Automatic Speech Recognition&#xff0c;简称ASR&#xff09;&#xff0c;其目标是将人类的语音中的词汇内容转换为计算机可读的输入&#xff0c;例如按键、二进制编码或者字符序列。语音识别技术已…

论文浅尝 | 用于开放式文本生成的事实增强语言模型

笔记整理&#xff1a;李煜&#xff0c;东南大学硕士&#xff0c;研究方向为知识图谱 链接&#xff1a;https://proceedings.neurips.cc/paper_files/paper/2022/hash/df438caa36714f69277daa92d608dd63-Abstract-Conference.html 1. 动机 生成式语言模型&#xff08;例如 GPT-3…

【机器学习基础】机器学习的模型评估(评估方法及性能度量原理及主要公式)

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习 欢迎订阅&#xff01;后面的内容会越来越有意思~ &#x1f4a1;往期推荐&#xff1a; 【机器学习基础】机器学习入门&#xff08;1&#xff09; 【机器学习基…

一文说清楚Openai的这波更新内容,大地震 一大波套壳公司倒闭

前几天Openai召开了首届的开发者大会&#xff0c;45分钟的会议&#xff0c;让千万用户感到兴奋&#xff0c;但是让万千的套壳的创业公司&#xff0c;却感觉如坐针毡。这次发布会发布了哪些功能&#xff1f;为什么会导致这种情况的发生&#xff1f;让我们接着往下讲 API升级且降…

Spring面试题:(七)Spring AOP思想及实现

AOP思想的概念 AOP的实现&#xff1a;动态代理技术 通过spring容器获取目标对象和增强对象&#xff0c;通过动态代理生产代理对象&#xff0c;在目标对象的目标方法执行增强方法&#xff0c;返回生成代理对象给spring容器&#xff0c;在获取bean时则获取代理对象。 JDK代理和…

虹科示波器 | 汽车免拆检修 | 2014款保时捷卡宴车行驶中发动机偶尔自动熄火

一、故障现象 一辆2014款保时捷卡宴车&#xff0c;搭载4.8L自然吸气发动机&#xff0c;累计行驶里程约为10.3万km。车主反映&#xff0c;行驶中发动机偶尔自动熄火&#xff0c;尤其在减速至停车的过程中故障容易出现。 二、故障诊断 接车后路试&#xff0c;确认故障现象与车主所…

《深入浅出.NET框架设计与实现》阅读笔记(四)

静态文件系统 通过ASP.NET Core 提供的静态文件模块和静态文件中间件&#xff0c;可以轻松的让应用程序拥有访问静态文件的功能&#xff0c;同时可以基于IFileProvider对象来自定义文件系统&#xff0c;如基于Redis做扩展文件系统 启动静态文件服务 在Program.cs 类中&#x…

image J 对Western blot 条带进行灰度分析 量化分析

用ImageJ对条带进行定量分析 | Public Library of Bioinformatics (plob.org) 3分钟Get&#xff01;大牛教你用 image J 对Western blot 条带进行灰度分析&#xff01; - 哔哩哔哩 (bilibili.com) 科研人员做的western blot实验一般需要对其结果扫描后进行灰度分析&#xff0…

34 mysql limit 的实现

前言 这里来看一下 我们常见的 mysql 分页的 limit 的相的处理 这个问题的主要是来自于 之前有一个需要处理 大数据量的数据表的信息, 将数据转移到 es 中 然后就是用了最简单的 “select * from tz_test limit $pageOffset, $pageSize ” 来分页处理 但是由于 数据表的数…

人工智能基础_机器学习033_多项式回归升维_多项式回归代码实现_非线性数据预测_升维后的数据对非线性数据预测---人工智能工作笔记0073

然后我们来实际的操作一下看看,多项式升维的作用,其实就是为了,来对,非线性的数据进行拟合. 我们直接看代码 import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression X=np.linspace(-1,11,num=100) 从-1到11中获取100个数…