线性代数本质系列(一)向量,线性组合,线性相关,矩阵

本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇

向量究竟是什么?
向量的线性组合,基与线性相关
矩阵与线性相关

矩阵乘法与线性变换
三维空间中的线性变换
行列式
逆矩阵,列空间,秩与零空间
克莱姆法则
非方阵
点积与对偶性
叉积
以线性变换眼光看叉积
基变换
特征向量与特征值
抽象向量空间
快速计算二阶矩阵特征值
张量,协变与逆变和秩

文章目录

  • 前言
  • 向量究竟是什么?
  • 向量的线性组合,基于线性相关
  • 矩阵与线性相关

前言

天道中丁元英说过一句话:佛说,看山是山,看水是水,普通大众寄情山水之间时,如神一般的丁元英却早已看透文化属性;今天我们不研究这么高深的哲学,回到线性代数,向量,矩阵对于我来讲只不过是一堆数字,但切换到神的视角,他们却是几何与变换,瞬间让线性代数变得更加立体生动,今天我们就从几何的角度去探索线性代数的本质。

向量究竟是什么?

通过“究竟”一词可见,对于向量的含义,存在不同的解释,目前,主要有三种解释:

⑴从物理学家的角度看:向量是指向空间的箭头,它有两个属性:长度和方向,无论怎么移动他都是同一个向量。
三维空间中的向量

⑵从计算机角度看:向量是有序的数字列表,例如对于房价预测而言,房子的面积,房间数就可以看作是一个向量: [ 80 4 ] \begin{bmatrix}80\\4\end{bmatrix} [804]

⑶从数学家的角度看:向量可以是任何东西,只要具有向量和向量加法,标量和向量乘法这两种运算规律的事务都可以看作是向量

v ⃗ + w ⃗ \vec{v} +\vec{w} v +w

2 v ⃗ 2\vec{v} 2v

例如:
[ − 4 10 ] + [ 20 1 ] = [ 16 11 ] \begin{equation*} \begin{bmatrix} -4\\ 10 \end{bmatrix} +\begin{bmatrix} 20\\ 1 \end{bmatrix} =\begin{bmatrix} 16\\ 11 \end{bmatrix} \end{equation*} [410]+[201]=[1611]

2 ∗ [ 80 4 ] = [ 160 8 ] \begin{equation*} 2*\begin{bmatrix} 80\\ 4 \end{bmatrix} =\begin{bmatrix} 160\\ 8 \end{bmatrix} \end{equation*} 2[804]=[1608]

由于数学家的角度过于抽象,这就出现了开头讲的,换个角度看问题,从几何角度看待线性代数,对于向量而言,就是在特定坐标系下,以原点为起点,指向某个方向的箭头:
二维向量

三维向量

现在已经有了使用几何方式表达向量的方法,下面让我们从几何角度重新审视向量的两种运算:

对于 v ⃗ + w ⃗ \vec{v} +\vec{w} v +w 而言,移动w到v的末尾,连接v的头和w的尾就是结果向量。

在这里插入图片描述

对于 2 v ⃗ 2\vec{v} 2v 而言,向量的方向不变,长度变为原来的两倍,如果标量是小数,则是缩小向量的长度,如果是负数,则是反方向缩放向量的长度。
在这里插入图片描述

向量的线性组合,基于线性相关

基向量:

“单位“是数学中必不可少的概念,缺少单位,数字变得毫无意义,同样,对于使用几何表示向量而言,也有存在单位的概念,这就是“基向量”,它代表指向x,y轴,长度为1的向量,我们分别用 i ⃗ \vec{i} i j ⃗ \vec{j} j 表示。
坐标基

有了基的概念后,向量的表示可以转换成以基为参照,例如向量 [ 3 − 2 ] \begin{bmatrix} 3\\ -2 \end{bmatrix} [32],则可以表示成: 3 ∗ i ⃗ + 2 ∗ j ⃗ 3*\vec{i} +2*\vec{j} 3i +2j
在这里插入图片描述

这里需要注意,前面我们选择指向x,y轴,且长度为1的向量作为基向量,但也可以选择不同的基,不同的基代表不同的坐标系,则对于一个向量而言,它代表不同的几何意义,例如,选择下面的v和w向量作为基向量时,向量 [ 1.5 − 0.62 ] \begin{bmatrix} 1.5\\ -0.62 \end{bmatrix} [1.50.62]代表的几何形状与 i ⃗ \vec{i} i j ⃗ \vec{j} j 为基向量时的形状是不一样的。
在这里插入图片描述

在这里插入图片描述

向量线性组合:

无论选择什么样的基向量,向量都可以写成更一般的形式: a v ⃗ + b w ⃗ a\vec{v} +b\vec{w} av +bw 我们称为向量的线性组合,a,b是标量,也称为缩放因子,v和w是向量,选择不同的缩放因子,向量的线性组合可以表示整个向量空间,也就是生成的向量可以到达平面中所有点。
不同标量值,结果向量落在不同点

但如果两个向量恰好共线时,则向量组合后的结果向量只能落在该直线上,我们称共线的两个向量是线性相关的,否则是线性无关。
在这里插入图片描述

更特殊地,当这两个向量都是0向量时,则向量组合后的结果向量只能落在原点上。

概括一下,所有可以被给定向量,用线性组合来表示的那些向量的集合,被称为给定向量张成的空间,两个不共线的向量,在二维空间中,其线性组合所张成的空间是整个二维空间;而在三维空间中,其张成的空间是三维空间中的一个面。
线性相关

线性无关

在三维空间中,三个向量的线性组合,如果其中一个向量在另两个向量张成的平面内,我们称该向量与其他两个向量线性相关,这三个向量的线性组合仍然是一个平面,只有三个向量互不线性相关时,那么这三个向量的线性组合才能张成整个三维空间。

矩阵与线性相关

矩阵:

先说结论:前面讲的向量可以视为一种带箭头的几何结构,那么矩阵就可以视为一种对几何的变换。

在线性代数中,变换是一种函数,将输入映射成输出,输入是向量,输出也是向量,同理,当输入是矩阵时,可以把矩阵分解成多个向量,那么输出也就是矩阵,变换有很多种,线性代数中只讨论线性变换,线性变换要求,任意直线变换后仍然是直线,且原点位置变换后保持不变,从几何角度看,线性变换就是拉伸,缩放,旋转。

下图变换后,直线变弯曲了,所以是非线性变换
非线性变换

下图变换后,原点位置变了,所以属于非线性变换
非线性变换

那我们如何求一个向量经过变换后的向量坐标呢?假设现有一个向量,在原始坐标系下可以表示成: v ⃗ = ( − 1 ) i ⃗ + 2 ∗ j ⃗ \vec{v} =( -1)\vec{i} +2*\vec{j} v =(1)i +2j
在这里插入图片描述

现在对向量v施加一个线性变换,根据线性变换的特性,变换后,网格仍然平行且间隔均等,假设两个基向量变换后的坐标如下图所示,向量v与两个基向量经过相同的变换变成新的基向量,那么,向量v经过变换后的向量仍然可以表示成:
v ⃗ t r a n s f o r m e d = ( − 1 ) i ⃗ t r a n s f o r m e d + 2 ∗ j t r a n s f o r m e d \begin{equation*} \vec{v}{}_{transformed} =( -1)\vec{i}{}_{transformed} +2*j{}_{transformed} \end{equation*} v transformed=(1)i transformed+2jtransformed
只不过基向量变成了变换后的基向量。
在这里插入图片描述

如上图
i ⃗ t r a n s f o r m e d = [ 1 − 2 ] \vec{i}{}_{transformed} =\begin{bmatrix} 1\\ -2 \end{bmatrix} i transformed=[12], j ⃗ t r a n s f o r m e d = [ 3 0 ] \vec{j}{}_{transformed} =\begin{bmatrix} 3\\ 0 \end{bmatrix} j transformed=[30]

变换后的v就等于: v ⃗ = ( − 1 ) [ 1 − 2 ] + 2 ∗ [ 3 0 ] = [ 5 2 ] \vec{v} =( -1)\begin{bmatrix} 1\\ -2 \end{bmatrix} +2*\begin{bmatrix} 3\\ 0 \end{bmatrix} =\begin{bmatrix} 5\\ 2 \end{bmatrix} v =(1)[12]+2[30]=[52]

也就是说,如果我们知道两个基向量变换后的向量,那么求任何一个向量经过变换后的向量的过程可以用下图所表示:
在这里插入图片描述

更进一步的,我们将两个基向量变换后的坐标向量用矩阵的形式组织起来,这个矩阵就是线性变换矩阵T。
在这里插入图片描述

对于任意一个向量A,例如, [ 7 2 ] \begin{bmatrix} 7\\ 2 \end{bmatrix} [72],求该线性变换T对该向量的作用时,只需要用矩阵与向量相乘即可: A t r a n s f o r m e d = [ 3 2 − 2 1 ] [ 7 2 ] = 7 [ 3 − 2 ] + 2 [ 2 1 ] A_{transformed} =\begin{bmatrix} 3 & 2\\ -2 & 1 \end{bmatrix}\begin{bmatrix} 7\\ 2 \end{bmatrix} =7\begin{bmatrix} 3\\ -2 \end{bmatrix} +2\begin{bmatrix} 2\\ 1 \end{bmatrix} Atransformed=[3221][72]=7[32]+2[21]

如果换个视角,反过来看,如果给出一个矩阵乘法: [ 3 2 − 2 1 ] [ 7 2 ] \begin{bmatrix} 3 & 2\\ -2 & 1 \end{bmatrix}\begin{bmatrix} 7\\ 2 \end{bmatrix} [3221][72],我们可以把矩阵第一列 [ 3 − 2 ] \begin{bmatrix} 3\\ -2 \end{bmatrix} [32]当作新的基向量 i ⃗ \vec{i} i ,把矩阵的第二列 [ 2 1 ] \begin{bmatrix} 2\\ 1 \end{bmatrix} [21]当作新的基向量 j ⃗ \vec{j} j ,根据向量的几何表示,向量 [ 7 2 ] \begin{bmatrix} 7\\ 2 \end{bmatrix} [72]用新的基向量表成: i ⃗ \vec{i} i 向正方向放大7倍, j ⃗ \vec{j} j 向正方向放大2倍,将变换后的向量相加就形成了结果向量。
在这里插入图片描述

再举个例子,看看逆时针旋转90度的变换矩阵是什么, i ⃗ \vec{i} i [ 1 0 ] \begin{bmatrix} 1\\ 0 \end{bmatrix} [10]变成 [ 0 1 ] \begin{bmatrix} 0\\ 1 \end{bmatrix} [01] j ⃗ \vec{j} j [ 0 1 ] \begin{bmatrix} 0\\ 1 \end{bmatrix} [01]变成 [ − 1 0 ] \begin{bmatrix} -1\\ 0 \end{bmatrix} [10],所以该变换矩阵为: [ 0 − 1 1 0 ] \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} [0110]

到此,就已经证明了我们在开头所说的:矩阵是一种线性变换。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/176851.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Sectigo SSL

Sectigo(前身为ComodoCA)是全球在线安全解决方案提供商和全球最大的证书颁发机构。为了强调其在SSL产品之外的扩张,Comodo在2018年更名为Sectigo。新名称减少了市场混乱,标志着公司向创新的全方位网络安全解决方案提供商过渡。 S…

软件工程——名词解释

适用多种类型的软件工程教材,有关名词释义的总结较为齐全~ 目录 1. 软件 2. 软件危机 3. 软件工程 4. 软件生存周期 5. 软件复用 6. 质量 7. 质量策划 8. 质量改进 9. 质量控制 10. 质量保证 11. 软件质量 12. 正式技术复审 13. ISO 14. ISO9000 15.…

Python开源项目DifFace——人脸重建(Face Restoration),模糊清晰、划痕修复及黑白上色的实践

无论是自己、家人或是朋友、客户的照片,免不了有些是黑白的、被污损的、模糊的,总想着修复一下。作为一个程序员 或者 程序员的家属,当然都有责任满足他们的需求、实现他们的想法。除了这个,学习了本文的成果,或许你还…

高德地图系列(四):vue项目利用高德地图实现车辆的路线规划

目录 第一章 效果图 第二章 源代码 第一章 效果图 小编该案例主要实现的两个点的思路:1、有两个正常的经纬度就可以在地图中绘制出汽车从起点到终点的路线规划;2、当用户经纬度发生变化时,用户可以通过某个操作,或者程序员通过…

ubuntu操作系统的docker更换存储目录

前言 要将Docker的存储目录更改为/home/docker,你需要进行以下步骤: 目录 前言1、停止Docker服务2、创建新的存储目录3、编辑Docker配置文件4、启动Docker服务5、验证更改 1、停止Docker服务 首先停止Docker守护进程,可以使用以下命令&…

C#中.NET Framework 4.8控制台应用通过EF访问已建数据库

目录 一、创建.NET Framework 4.8控制台应用 二、建立数据库 1. 在SSMS中建立数据库Blogging 2.在VS上新建数据库连接 三、安装EF程序包 四、自动生成EF模型和上下文 1.Blog.cs类的模型 2.Post.cs类的模型 3.BloggingContext.cs数据库上下文 五、编写应用程序吧 我们…

CCNA课程实验-13-PPPoE

目录 实验条件网络拓朴需求 配置实现基础配置模拟运营商ISP配置ISP的DNS配置出口路由器OR基础配置PC1基础配置 出口路由器OR配置PPPOE拨号创建NAT(PAT端口复用) PC1测试结果 实验条件 网络拓朴 需求 OR使用PPPoE的方式向ISP发送拨号的用户名和密码,用户名&#xf…

java入门,从CK导一部分数据到mysql

一、需求 需要从生产环境ck数据库导数据到mysql,数据量大约100w条记录。 二、处理步骤 1、这里的关键词是生产库,第二就是100w条记录。所以处理数据的时候就要遵守一定的规范。首先将原数据库表进行备份,或者将需要导出的数据建一张新的表了…

从0开始python学习-32.pytest.mark()

目录 1. 用户自定义标记 1.1 注册标记​编辑 1.2 给测试用例打标记​编辑 1.3 运行标记的测试用例 1.4 运行多个标记的测试用例 1.5 运行指定标记以外的所有测试用例 2. 内置标签 2.1 skip :无条件跳过(可使用在方法,类,模…

HashMap之扩容原理

HashMap 数据结构为 数组链表(JDk1.7),JDK1.8中增加了红黑树,其中:链表的节点存储的是一个 Entry 对象,每个Entry 对象存储四个属性(hash,key,value,next&…

uniapp开发ios上线(在win环境下使用三方)

苹果 1、win环境下无法使用苹果os编译器所以使用第三方上传工具,以下示例为 初雪云 (单次收费,一元一次) 初雪云(注册p12证书):https://www.chuxueyun.com/#/pages/AppleCertificate 苹果开发者…

Linux 之 MakeFile

MakeFile 前言MakeFile基本介绍MakeFile介绍MakeFile文件命名Makefile编写规则MakeFile的执行步骤 MakeFilemakefile组成元素makefile显示规则makefile隐晦规则伪目标(标签与文件冲突问题) makefile变量定义makefile中的运算符和特殊变量 makefile文件指示makefile注释 makefil…