RK3568笔记五:基于Yolov5的训练及部署

若该文为原创文章,转载请注明原文出处。

一. 部署概述

环境:Ubuntu20.04、python3.8

芯片:RK3568

芯片系统:buildroot

开发板:ATK-DLRK3568

开发主要参考文档:《Rockchip_Quick_Start_RKNN_Toolkit2_CN-1.4.0.pdf》、《Rockchip_User_Guide_RKNN_Toolkit2_CN-1.4.0.pdf》
 

二、yolov5模型训练

1、训练环境

训练是在云端训练的,平台AutoDL租了一台2080IT,配置如下:

2、环境搭建

1、创建conda环境

conda create -n rkyolov5 python=3.8       // 用于yolov5
conda create -n rknn2_env python=3.8 -y   // 用于rknn2

2、激活conda环境

conda activate rkyolov5
​
conda deactivate  // 退出环境

3、安装pytoch

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple 

4、下载yolov5-v6.0

首先需要在官网下载yolov5-6.0的项目 我们打开yolov的官网,Tags选择6.0版本

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

5、训练

python train.py --img 640 --data coco128.yaml --cfg yolov5s.yaml --weights yolov5s.pt --epoch 300 --batch-size 16 --device 0

出错:The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:

原因numpy版本问题

处理,重新安装

pip uninstall numpypip install numpy==1.22

出错:AttributeError: module 'PIL.Image' has no attribute 'ANTIALIAS

ModuleNotFoundError: No module named 'PIL'

原因是pillow库版本不支持,降低版本

pip install pillow==9.5.0

6、pt转onnx

转换步骤:

修改models/yolo.py,修改class Detect(nn.Module):的forward函数

注意!!!仅在转换时修改,在训练时改回原状态!再训练时不要忘记哦!

# def forward(self, x):
#     z = []  # inference output
#     for i in range(self.nl):
#         x[i] = self.m[i](x[i])  # conv
#         bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
#         x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
#
#         if not self.training:  # inference
#             if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
#                 self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
#
#             y = x[i].sigmoid()
#             if self.inplace:
#                 y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
#                 y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
#             else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
#                 xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
#                 wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2)  # wh
#                 y = torch.cat((xy, wh, y[..., 4:]), -1)
#             z.append(y.view(bs, -1, self.no))
#
#     return x if self.training else (torch.cat(z, 1), x)
​
def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # conv
​return x

修改export.py函数的--opset为12

运行export.py

python export.py --weights best.pt --img 640 --batch 1 --opset 12

简化模型

python -m onnxsim weights/yolov5s.onnx weights/yolov5s-sim.onnx

三、安装rknn-toolkit2

根据正点原子的教程安装,先安装工具链,在创建环境,在安装rknn-toolkit2,之后转换模型

下载地址:GitHub - rockchip-linux/rknn-toolkit2

1、创建一个新的环境

conda create rknn2_env python=3.8 -y

2、安装

进入packages

pip install rknn_toolkit2-1.5.2+b642f30c-cp38-cp38-linux_x86_64.whl

等待安装

把转换好的onnx 拷贝到 rknn-toolkit2-master/examples/onnx/yolov5目录下,

3、修改test.py文件

ONNX_MODEL = 'yolov5s_relu.onnx'
RKNN_MODEL = 'yolov5s_relu.rknn'

4、运行

python test.py

出错: ImportError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found (required by /root/miniconda3/envs/rknn2_env/lib/python3.8/site-packages/rknn/api/lib/linux-x86_64/cp38/librknnc.so)

原因:工具链没安装,安装后测试正常。

四、部署

通过测试,使用正点原子的yolov5例程测试结果不对,所以使用SDK里自带的rknpu2里的example

重新编译里面的例子,直接编译不编译不过,需要修改一下。

修改build-linux_RK356X.sh和CMakeLists.txt,把正点原子的libs拷贝过来重新编译

编译后的文件在install目录下,把rknn_yolov5_demo_Linux通过adb拷贝到开发板上。

打开开发板终端,运行: ./rknn_yolov5_demo model/RK356X/last.rknn model/zidane.jpg

生成的结果保存在当前目录下。

通过输出信息可以看来推理有出结果,结果也是对的,但只有一个,图片是有2个人.

程序应该还有地方要修改,等到改好后在开放代码。

如有侵权,或需要完整代码,请及时联系博主。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/177961.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

双十一买高画质投影仪,当贝F6还是极米H6?

如果你想购买一台4K画质的投影仪,那么在各大平台搜索“双十一最值得买的4K投影仪”时,一定会注意到当贝F6和极米H6这两个型号投影仪。个人认为当贝F6和极米H6都分别是当贝和极米两个品牌非常具有性价比的4K投影仪。那么到底哪一台更适合你。 首先放一张参数对比图,方便参数控研…

Leetcode—191.位1的个数【简单】

2023每日刷题&#xff08;二十七&#xff09; Leetcode—191.位1的个数 实现代码 int hammingWeight(uint32_t n) {int ans 0;for(int i 0; i < 32; i) {if(n & ((long long)1 << i)) {ans;}}return ans; }运行结果 翻转比特1思路 就解法一的代码实现来说&am…

node服务部署vue3(ssr)单页面应用上线

博主最新开发了vue3新版的单页面服务端渲染的博客&#xff0c;框架用的vue3框架&#xff0c;vite4构建&#xff0c;在部署上线的时候遇到了一些问题&#xff0c;现在分享给大家。避免踩坑 node环境搭建 node安装包下载 因为我的服务器系统是linux&#xff0c;所以选择linux版本…

小DEMO:在vue中自定义range组件

1、组件样式 2、使用 import cSlider from /components/c-slider/c-slider.vue<div class"range"><cSlider v-model"cScale" change"cScaleChange" :min"1" :max"10"/> </div> 3、组件代码 <templa…

【数电】IEEE754浮点数

IEEE754浮点数 1.组成及分类2.计算(1)符号位(2)阶码(3)尾码(4)实际计算公式 1.组成及分类 &#xff08;1&#xff09;组成 IEEE754浮点数由三部分组成&#xff1a;符号位、阶码和尾码。 &#xff08;2&#xff09;分类 根据数据位宽分为三类&#xff1a;短浮点数、长浮点数和…

C++ opencv基本用法【学习笔记(九)】

这篇博客为修改过后的转载&#xff0c;因为没有转载链接&#xff0c;所以选了原创 文章目录 一、vs code 结合Cmake debug1.1 配置tasks.json1.2 配置launch.json 二、图片、视频、摄像头读取显示2.1 读取图片并显示2.2 读取视频文件并显示2.3 读取摄像头并写入文件 三、图片基…

轻量封装WebGPU渲染系统示例<30>- 绘制线段(源码)

原理说明&#xff1a; WebGPU提供了绘制基本线条非机制&#xff0c;只要render pipeline primitive对应的 topology属性指定为line-list或者line-strip即可绘制对应的线条。 当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxg…

计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)

第1章&#xff1a;视觉项目资料介绍与学习指南 相关知识&#xff1a; 介绍计算机视觉、OpenCV库&#xff0c;以及课程的整体结构。学习概要&#xff1a; 了解课程的目标和学习路径&#xff0c;为后续章节做好准备。重要性&#xff1a; 提供学生对整个课程的整体认识&#xff0…

2023年【安全员-C证】考试题库及安全员-C证考试总结

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 安全员-C证考试题库根据新安全员-C证考试大纲要求&#xff0c;安全生产模拟考试一点通将安全员-C证模拟考试试题进行汇编&#xff0c;组成一套安全员-C证全真模拟考试试题&#xff0c;学员可通过安全员-C证考试总结全…

Netty入门指南之Reactor模型

作者简介&#xff1a;☕️大家好&#xff0c;我是Aomsir&#xff0c;一个爱折腾的开发者&#xff01; 个人主页&#xff1a;Aomsir_Spring5应用专栏,Netty应用专栏,RPC应用专栏-CSDN博客 当前专栏&#xff1a;Netty应用专栏_Aomsir的博客-CSDN博客 文章目录 参考文献前言单线程…

Git本地项目提交到Gitee的操作流程

一、Gitee创建一个仓库 第一步&#xff1a; 第二步&#xff1a; 第三步&#xff1a; 第四步&#xff1a;复制该仓库地址&#xff08;https://gitee.com/yassels/test_1115.git&#xff09;&#xff0c;留待后续使用 二、操作本地文件上传到Gitee 第一步&#xff1a; 第二步…

利用网络管理解决方案简化网络运维

当今的网络正朝着提高敏捷性和动态功能的方向发展&#xff0c;以支持高级网络要求和关键业务流程&#xff0c;这导致 IT 基础架构也跨越无线、虚拟和混合环境。但是&#xff0c;随着网络的快速发展&#xff0c;如果没有合适的解决方案&#xff0c;IT 管理员很难管理它们&#x…