太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

一直想做一个从爬虫到数据处理,到API部署,再到小程序展示的一条龙项目,最近抽了些时间,实现了一个关于知乎热榜的,今天就来分享一下!

由于代码还没有完全整理好,今天只给出一个大致的思路和部分代码,最终的详细代码可以关注后续的文章!

数据爬取

首先我们看下需要爬取的知乎热榜

https://www.zhihu.com/billboard

这个热榜可以返回50条热榜数据,而这些数据都是通过页面的一个 JavaScript 返回的

太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

于是我们就可以通过解析这段 JS 代码来获取对应数据

url='https://www.zhihu.com/billboard'
headers={"User-Agent":"","Cookie":""}defget_hot_zhihu():
res=requests.get(url,headers=headers)
content=BeautifulSoup(res.text,"html.parser")
hot_data=content.find('script',id='js-initialData').string
hot_json=json.loads(hot_data)
hot_list=hot_json['initialState']['topstory']['hotList']
returnhot_list

然后我们再点击一个热榜,查看下具体的热榜页面,我们一直向下下拉页面,并打开浏览器的调试板,就可以看到如下的一个请求

太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

该接口返回了一个包含热榜回答信息的 json 文件,可以通过解析该文件来获取对应的回答

defget_answer_zhihu(id):
url='https://www.zhihu.com/api/v4/questions/%s/answers?include='%id
headers={"User-Agent":"","Cookie":""}
res=requests.get(url+Config.ZHIHU_QUERY,headers=headers)
data_json=res.json()
answer_info=[]
foriindata_json['data']:
if'paid_info'ini:
continue
answer_info.append({'author':i['author']['name'],'voteup_count':i['voteup_count'],
'comment_count':i['comment_count'],'content':i['content'],
'reward_info':i['reward_info']['reward_member_count']})
returnanswer_info

数据存储

获取到数据之后,我们需要存储到数据库中,以便于后续使用。因为后面准备使用 Flask 来搭建 API 服务,所以这里存储数据的过程也基于 Flask 来做,用插件 flask_sqlalchemy。

定义数据结构

我们定义三张表,分别存储知乎热榜的详细列表信息,热榜的热度信息和热榜对应的回答信息

classZhihuDetails(db.Model):
__tablename__='ZhihuDetails'
id=db.Column(db.Integer,primary_key=True)
hot_id=db.Column(db.String(32),unique=True,index=True)
hot_name=db.Column(db.Text)
hot_link=db.Column(db.String(64))
hot_cardid=db.Column(db.String(32))classZhihuMetrics(db.Model):
__tablename__='ZhihuMetrics'
id=db.Column(db.Integer,primary_key=True)
hot_metrics=db.Column(db.String(64))
hot_cardid=db.Column(db.String(32),index=True)
update_time=db.Column(db.DateTime)classZhihuContent(db.Model):
__tablename__='ZhihuContent'
id=db.Column(db.Integer,primary_key=True)
answer_id=db.Column(db.Integer,index=True)
author=db.Column(db.String(32),index=True)
voteup_count=db.Column(db.Integer)
comment_count=db.Column(db.Integer)
reward_info=db.Column(db.Integer)
content=db.Column(db.Text)

定时任务

由于我们需要定时查询热榜列表和热榜的热度值,所以这里需要定时运行相关的任务,使用插件 flask_apscheduler 来做定时任务

我们的定时任务,涉及到了网络请求和数据入库的操作,把这部分定时任务代码单独拉出来,在 Flask 项目的根目录下创建一个文件 apschedulerjob.py,由于在运行该文件时,是没有 Flask app 变量的,所以我们需要手动调用 app_context() 方法来创建 app 上下文

defopera_db():
withscheduler.app.app_context():
...

当然,这里的 scheduler 变量是在 create_app 中初始化过的

fromflask_apschedulerimportAPSchedulerscheduler=APScheduler()defcreate_app(config_name):
app=Flask(__name__)
app.config.from_object(config[config_name])
config[config_name].init_app(app)
db.init_app(app)
scheduler.init_app(app)
...

接着,我们就可以根据前面的两个爬虫函数,来分别入库数据了

入库热榜热度数据

update_metrics=ZhihuMetrics(hot_metrics=i['target']['metricsArea']['text'],
hot_cardid=i['cardId'],
update_time=datetime.datetime.now())

入库热榜列表数据

new_details=ZhihuDetails(hot_id=i['id'],hot_name=i['target']['titleArea']['text'],
hot_link=i['target']['link']['url'],hot_cardid=i['cardId'])

入库热榜回答数据

new_content=ZhihuContent(answer_id=answer_id,author=answer['author'],voteup_count=answer['voteup_count'],
comment_count=answer['comment_count'],reward_info=answer['reward_info'],
content=answer['content'])

最后我们就可以在 Flask 的入口程序中启动定时任务了

importos
fromappimportcreate_app,schedulerapp=create_app(os.getenv('FLASK_CONFIG')or'default')if__name__=='__main__':
scheduler.start()
app.run(debug=True)

编写 API

热榜列表 API

我们首先来做热榜列表的接口,在数据库表 ZhihuMetrics 中拿到当天热榜的最新热度信息,然后再根据热榜热度信息来获取对应的列表信息,可以总结到如下的一个函数中

defzhihudata():
current_time='%s-%s-%s00:00:00'%(datetime.now().year,datetime.now().month,datetime.now().day,)
zhihumetrics_data=ZhihuMetrics.query.filter(ZhihuMetrics.update_time>current_time).group_by(ZhihuMetrics.hot_cardid).order_by(ZhihuMetrics.update_time).all()
metrics_list=db_opera.db_to_list(zhihumetrics_data)
details_list=[]
fordinmetrics_list:
zhihudetails_data=ZhihuDetails.query.filter_by(hot_cardid=d[1]).first()
details_list.append([zhihudetails_data.hot_name,zhihudetails_data.hot_link,d[0],d[1],d[2]])returndetails_list

接着定义一个视图函数返回 json 数据

@api.route('/api/zhihu/hot/')
defzhihu_api_data():
zhihu_data=zhihudata()
data_list=[]
fordatainzhihu_data:
data_dict={'title':data[0],'link':data[1],'metrics':data[2],'hot_id':data[3],'update_time':data[4]}
data_list.append(data_dict)returnjsonify({'code':0,'content':data_list}),200

热榜详情 API

下面再来做热榜详情接口,该接口可以返回热榜热度走势信息,为前端画图提供数据。

defzhihudetail(hot_id):
zhihumetrics_details=ZhihuMetrics.query.filter_by(hot_cardid=hot_id).order_by(ZhihuMetrics.update_time).all()
Column={'categories':[],'series':[{'name':'热度走势','data':[]}]}foriinzhihumetrics_details:
Column['categories'].append(datetime.strftime(i.update_time,"%Y-%m-%d%H:%M"))
Column['series'][0]['data'].append(int(i.hot_metrics.split()[0]))returnColumn@api.route('/api/zhihu/detail/<id>/')
defzhihu_api_detail(id):
zhihu_detail=zhihudetail(id)
returnjsonify({'code':0,'data':zhihu_detail}),200

接入小程序

对于小程序端,我们这里使用了 uni-app 框架,这是一个可以一份代码多端运行的框架,还是比较不错的。

创建项目

首先通过 IDE HBuilder 创建一个 uni-app 模板

太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

改造项目

我们简单改造下该模板,首先修改下 index.nvue 文件,把 tabList 修改如下

data(){
return{
tabList:[{
id:"tab01",
name:'知乎热榜',
newsid:0
},{
id:"tab02",
name:'微博热榜',
newsid:23
},

我们暂时只保留两个 tab 页签,没错后面还要再做微博的热榜!

接下来打开 news-page.nvue 文件,修改网络请求地址

uni.request({url:'http://127.0.0.1:5000/api/zhihu/hot/',
data:'',

把 URL 地址指向我们自己的 API 服务地址

然后再添加我们自己的新闻参数

hot_id:news.hot_id,
metrics:news.metrics,
news_url:news.link

再修改函数 goDetail 如下

goDetail(detail){
if(this.navigateFlag){
return;
}
this.navigateFlag=true;
uni.navigateTo({
url:'/pages/detail/detail-new?query='+encodeURIComponent(JSON.stringify(detail))
});
setTimeout(()=>{
this.navigateFlag=false;
},200)
},

点击每条热榜时,就会跳转到 url 对应的 /pages/detail/detail-new 页面

引入 uCharts

下面编写 detail-new.nvue 文件,这里主要用到了 uni-app 的插件 uCharts。这是一个高性能的跨端图表插件,非常好用。

template 部分

<template>
<viewclass="qiun-columns">
<viewclass="qiun-bg-whiteqiun-title-barqiun-common-mt">
<viewclass="qiun-title-dot-light">柱状热力分布</view>
</view>
<viewclass="qiun-charts">
<canvascanvas-id="canvasColumn"id="canvasColumn"class="charts"@touchstart="touchColumn"></canvas>
</view><viewclass="qiun-bg-whiteqiun-title-barqiun-common-mt">
<viewclass="qiun-title-dot-light">线性走势</view>
</view>
<viewclass="qiun-charts">
<canvascanvas-id="canvasLine"id="canvasLine"class="charts"@touchstart="touchColumn"></canvas>
</view>
</view>
</template>

创建两个 view,分别用于展示柱状图和折线图

再编写 script 部分

getServerData(){
uni.request({
url:'http://127.0.0.1:5000/api/zhihu/detail/'+this.details.hot_id,
data:{
},
success:function(res){
_self.serverData=res.data.data;
letColumn={categories:[],series:[]};
Column.categories=res.data.data.categories;
Column.series=res.data.data.series;
_self.showColumn("canvasColumn",Column);
_self.showLine("canvasLine",Column);
},
fail:()=>{
_self.tips="网络错误,小程序端请检查合法域名";
},
});
}

再根据 uCharts 的官方文档编写对应的展示图表函数

showColumn(canvasId,chartData){
canvaColumn=newuCharts({
$this:_self,
canvasId:canvasId,
type:'column',
legend:{show:true},
fontSize:11,
background:'#FFFFFF',
pixelRatio:_self.pixelRatio,
animation:true,
categories:chartData.categories,
series:chartData.series,
enableScroll:true,
xAxis:{
disableGrid:true,
scrollShow:true,
itemCount:4,
},
yAxis:{
//disabled:true
},
dataLabel:true,
width:_self.cWidth*_self.pixelRatio,
height:_self.cHeight*_self.pixelRatio,
extra:{
column:{
type:'group',
width:_self.cWidth*_self.pixelRatio*0.45/chartData.categories.length
}
}
});}

这样,我们就完成了基本的项目开发

我们可以到小程序的模拟器来查看效果啦

热榜列表页面

太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

热榜详情页面

太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

太好玩了,爬虫、部署API、加小程序,一条龙玩转知乎热榜

基本的效果是有了,不过还有很多需要优化的地方,下一次,我会分享出优化后的代码以及如何把 API 服务部署到云端,同时还是提供出供大家练习的 API,不要错过哦!

最后

分享一份Python的学习资料,但由于篇幅有限,完整文档可以扫码免费领取!!!

1)Python所有方向的学习路线(新版)

总结的Python爬虫和数据分析等各个方向应该学习的技术栈。

在这里插入图片描述

比如说爬虫这一块,很多人以为学了xpath和PyQuery等几个解析库之后就精通的python爬虫,其实路还有很长,比如说移动端爬虫和JS逆向等等。

img

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然达不到大佬的程度,但是精通python是没有问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/179522.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

零一万物回应「抄袭 LLaMA」;京东原副总裁试用可穿戴人工喉丨 RTE 开发者日报 Vol.85

开发者朋友们大家好&#xff1a; 这里是 「RTE 开发者日报」 &#xff0c;每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE &#xff08;Real Time Engagement&#xff09; 领域内「有话题的 新闻 」、「有态度的 观点 」、「有意思的 数据 」、「有思考的 文…

淘宝客APP源码/社交电商自营商城源码/前端基于Uniapp开发

淘宝客APP源码&#xff0c;前端基于Uniapp开发的社交电商自营商城源码。Thinkphp的后台&#xff0c;不是很标准&#xff0c;感兴趣的可以自行研究。 商城功能 1、首页基础装修&#xff1b;2、丰富选品库&#xff1b;3、淘口令解析&#xff1b;4、支持京东&#xff1b;5、支持…

Zookeeper Java SDK 开发入门

文章目录 一、概述二、导入依赖包三、与 Zookeeper 建立连接四、判断 ZooKeeper 节点是否存在四、创建 ZooKeeper 节点数据五、获取 ZooKeeper 节点数据六、修改 ZooKeeper 节点数据七、异步获取 ZooKeeper 节点数据八、完整示例 如果您还没有安装Zookeeper请看ZooKeeper 安装说…

python自动化第一篇—— 带图文的execl的自动化合并

简述 最近接到一个需求&#xff0c;需要为公司里的一个部门提供一个文件上传自动化合并的系统&#xff0c;以供用户稽核&#xff0c;谈到自动化&#xff0c;肯定是选择python&#xff0c;毕竟python的轮子多。比较了市面上几个用得多的python库&#xff0c;我最终选择了xlwings…

mask-rcnn原理与实战

一、Mask R-CNN是什么&#xff0c;可以做哪些任务&#xff1f; Mask R-CNN是一个实例分割&#xff08;Instance segmentation&#xff09;算法&#xff0c;可以用来做“目标检测”、“目标实例分割”、“目标关键点检测”。 1. 实例分割&#xff08;Instance segmentation&am…

比较器应用之一_窗口比较器/极限比较器

窗口比较器&#xff1a;用处能在一个&#xff0c;电压落在规定的范围之内&#xff0c;报警或者不报警 当输入电压u1 > URa时&#xff0c;必然大于UaL&#xff0c;所以集成运放A1的输出uo1Uow&#xff0c;A2的输出u02-Uow。使得二极管D1导通&#xff0c;D2截止&#xff0c;电…

使用c++程序,实现图像平移变换,图像缩放、图像裁剪、图像对角线镜像以及图像的旋转

数字图像处理–实验三A图像的基本变换 实验内容 A实验&#xff1a; &#xff08;1&#xff09;使用VC设计程序&#xff1a;实现图像平移变换&#xff0c;图像缩放、图像裁剪、图像对角线镜像。 &#xff08;2&#xff09;使用VC设计程序&#xff1a;对一幅高度与宽度均相等的…

2023/11/15JAVA学习

如何多开一个程序

Flink SQL -- 反压

1、测试反压&#xff1a; 1、反压&#xff1a; 指的是下游消费数据的速度比上游产生数据的速度要小时会出现反压&#xff0c;下游导致上游的Task反压。 2、测试反压&#xff1a;使用的是DataGen CREATE TABLE words (word STRING ) WITH (connector datagen,rows-per-second…

Windows环境下ADB调试——安装adb

一、下载 Windows版本&#xff1a;https://dl.google.com/android/repository/platform-tools-latest-windows.zipMac版本&#xff1a;https://dl.google.com/android/repository/platform-tools-latest-darwin.zipLinux版本&#xff1a;https://dl.google.com/android/reposit…

【小白的Spring源码手册】 BeanFactoryPostProcessor的注册和用法(BFPP)

目录 前言应用1. 手动注册2. 自动注册3. 优先级 前言 沿用上一篇文章的流程图&#xff0c;我们的注解类应用上下文中的AnnotationConfigApplicationContext#scan(String...)方法已经将所有BeanDefinition注册到了IoC容器中。完成注册后&#xff0c;开始执行AbstractApplicatio…

轻量封装WebGPU渲染系统示例<32>- 若干线框对象(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/WireframeEntityTest.ts 当前示例运行效果: 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源码如下: export class WireframeEntityTest {private mRsc…