004 OpenCV akaze特征点检测匹配

目录

一、环境

二、akaze特征点算法

2.1、基本原理

2.2、实现过程

2.3、实际应用

2.4、优点与不足

三、代码

3.1、数据准备

3.2、完整代码


一、环境

本文使用环境为:

  • Windows10
  • Python 3.9.17
  • opencv-python 4.8.0.74

二、akaze特征点算法

特征点检测算法AKAZE是一种广泛应用于图像处理领域的算法,它可以在不同尺度下提取图像的特征点,并具有尺度不变性和旋转不变性等优点。本文将概括介绍AKAZE算法的基本原理、实现过程以及其在实际应用中的表现。

2.1、基本原理

AKAZE算法是基于尺度空间理论和图像金字塔的,它通过非线性扩散滤波来构建尺度空间,并在尺度空间中检测关键点。在AKAZE中,关键点的检测是通过一个称为“加速非线性扩散”的过程来实现的,该过程可以快速地生成尺度空间。此外,AKAZE还采用了M-LDB描述子来描述特征点的周围区域。

2.2、实现过程

  1. 图像预处理:首先,对输入图像进行预处理,包括灰度化和降噪等操作,以提高算法的准确性。
  2. 构建尺度空间:然后,通过非线性扩散滤波来构建尺度空间,并在尺度空间中检测关键点。在这个过程中,采用了一种称为“加速非线性扩散”的方法,该方法可以快速地生成尺度空间。
  3. 关键点检测:在尺度空间中,采用基于区域的方法来检测关键点。这些关键点对应于图像中的局部极值点,即在周围区域内具有最大或最小的灰度值。
  4. 描述子生成:在检测到关键点后,AKAZE采用M-LDB描述子来描述特征点的周围区域。M-LDB描述子是一种改进的LDB描述子,它可以更好地描述图像的特征。
  5. 特征匹配:最后,通过比较不同图像之间的M-LDB描述子来进行特征匹配,从而识别出图像中的相似区域。

2.3、实际应用

AKAZE算法在实际应用中表现出了良好的性能,可以应用于许多领域,如目标识别、图像配准、拼接等。例如,在目标识别中,AKAZE可以用于检测图像中的目标特征点,并通过特征匹配来识别出目标物体。此外,AKAZE还可以用于图像拼接中,通过对齐不同图像中的特征点来实现无缝拼接。

2.4、优点与不足

AKAZE算法具有以下优点:

  1. 尺度不变性:AKAZE算法能够在不同尺度下提取图像的特征点,从而适应了不同尺度的图像。
  2. 旋转不变性:AKAZE算法具有旋转不变性,可以在不同角度下提取图像的特征点。
  3. 加速性能:与SIFT算法相比,AKAZE算法采用了加速非线性扩散方法来构建尺度空间,具有更快的运行速度。
  4. 稳健性:AKAZE算法对噪声和干扰具有较强的鲁棒性,能够提取出较为稳健的特征点。

然而,AKAZE算法也存在一些不足之处:

  1. 对光照变化敏感:AKAZE算法对光照变化较为敏感,可能会受到光照变化的影响。
  2. 对局部变化敏感:AKAZE算法对局部变化较为敏感,可能会导致误检或漏检。
  3. 需要手动设置参数:AKAZE算法需要手动设置一些参数,如尺度空间级数、加速非线性扩散的迭代次数等。这些参数的设置会影响到算法的性能和准确性。

总之,特征点检测算法AKAZE是一种有效的图像特征提取方法,具有尺度不变性和旋转不变性等优点。在实际应用中表现出了良好的性能,可以应用于许多领域。然而,它也存在一些不足之处,如对光照变化敏感、对局部变化敏感以及需要手动设置参数等。未来可以进一步改进和完善AKAZE算法的性能和准确性。

三、代码

3.1、数据准备

代码需要的两张图,一个xml格式的文件,即:H1to3p.xml,如下:

<?xml version="1.0"?>
<opencv_storage>
<H13 type_id="opencv-matrix"><rows>3</rows><cols>3</cols><dt>d</dt><data>7.6285898e-01  -2.9922929e-01   2.2567123e+023.3443473e-01   1.0143901e+00  -7.6999973e+013.4663091e-04  -1.4364524e-05   1.0000000e+00 </data></H13>
</opencv_storage>

3.2、完整代码

代码:

from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
from math import sqrt# 读取两张图片
parser = argparse.ArgumentParser(description='Code for AKAZE local features matching tutorial.')
parser.add_argument('--input1', help='Path to input image 1.', default='graf1.png') # 在这里设置图像1
parser.add_argument('--input2', help='Path to input image 2.', default='graf3.png') # 在这里设置图像2
parser.add_argument('--homography', help='Path to the homography matrix.', default='H1to3p.xml') # 在这里设置H矩阵
args = parser.parse_args()img1 = cv.imread(cv.samples.findFile(args.input1), cv.IMREAD_GRAYSCALE)
img2 = cv.imread(cv.samples.findFile(args.input2), cv.IMREAD_GRAYSCALE)
if img1 is None or img2 is None:print('Could not open or find the images!')exit(0)
fs = cv.FileStorage(cv.samples.findFile(args.homography), cv.FILE_STORAGE_READ)
homography = fs.getFirstTopLevelNode().mat()## 初始化算法[AKAZE]
akaze = cv.AKAZE_create()
# 检测图像1和图像2的特征点和特征向量
kpts1, desc1 = akaze.detectAndCompute(img1, None)
kpts2, desc2 = akaze.detectAndCompute(img2, None)## 基于汉明距离,使用暴力匹配来匹配特征点
matcher = cv.DescriptorMatcher_create(cv.DescriptorMatcher_BRUTEFORCE_HAMMING)
nn_matches = matcher.knnMatch(desc1, desc2, 2)## 下面0.8默认参数,可以手动修改、调试
matched1 = []
matched2 = []
nn_match_ratio = 0.8 # 最近邻匹配参数
for m, n in nn_matches:if m.distance < nn_match_ratio * n.distance:matched1.append(kpts1[m.queryIdx])matched2.append(kpts2[m.trainIdx])## 使用单应矩阵进行精匹配,进一步剔除误匹配点
inliers1 = []
inliers2 = []
good_matches = []
inlier_threshold = 2.5 # 如果两个点距离小于这个值,表明足够近,也就是一对匹配对
for i, m in enumerate(matched1):col = np.ones((3,1), dtype=np.float64)col[0:2,0] = m.ptcol = np.dot(homography, col)col /= col[2,0]dist = sqrt(pow(col[0,0] - matched2[i].pt[0], 2) +\pow(col[1,0] - matched2[i].pt[1], 2))if dist < inlier_threshold:good_matches.append(cv.DMatch(len(inliers1), len(inliers2), 0))inliers1.append(matched1[i])inliers2.append(matched2[i])## 可视化
res = np.empty((max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], 3), dtype=np.uint8)
cv.drawMatches(img1, inliers1, img2, inliers2, good_matches, res)
cv.imwrite("akaze_result.png", res)inlier_ratio = len(inliers1) / float(len(matched1))
print('A-KAZE Matching Results')
print('*******************************')
print('# Keypoints 1:                        \t', len(kpts1))
print('# Keypoints 2:                        \t', len(kpts2))
print('# Matches:                            \t', len(matched1))
print('# Inliers:                            \t', len(inliers1))
print('# Inliers Ratio:                      \t', inlier_ratio)cv.imshow('result', res)
cv.waitKey()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/188547.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

三菱FX3U小项目—传输带定分级控制

目录 一、项目描述 二、IO口分配 三、项目程序 四、总结 一、项目描述 两条运输带顺序相连&#xff0c;为了避免运送的物料在1号运输线上堆积&#xff0c;所以启动时&#xff0c;1号运输带开始运行&#xff0c;5S后2号运输带自动启动。停机时顺序与启动刚好相反&#xff0c…

激光跟踪仪在超大型工件空间测量中的应用,你了解多少?

超大型工件的空间测量是现代制造业中的一个难题。传统的测量方法无法同时满足高精度和高效率的要求&#xff0c;从而制约了工件制造的质量和效益。 激光跟踪仪作为一种创新的测量设备&#xff0c;具有无接触、高精度和高速度的特点。它采用了先进的激光干涉测距和角度测量技术…

新加坡金融科技节,IMF呼吁加快CBDCs数币的框架

CBDCS,那CBDC是什么呢&#xff1f; 中央银行数字货币 CBDC&#xff08;英文&#xff1a;Central Bank Digital Currency&#xff09;&#xff0c;指的是数字版本的国家货币. 我们现在经常听到的数字人民币&#xff0c;也就是中国的CBDC. 在传统与创新的交汇处&#xff0c;一种…

使用 Redis BitMap 实现签到与查询历史签到以及签到统计功能(SpringBoot环境)

目录 一、前言二、Redis BitMap 位图原理2.1、BitMap 能解决什么2.2、BitMap 存储空间计算2.3、BitMap 存在问题 三、Redis BitMap 操作基本语法和原生实现签到3.1、基本语法3.2、Redis BitMap 实现签到操作指令 四、SpringBoot 使用 Redis BitMap 实现签到与统计功能4.1、代码…

YOLOv5 配置C2模块构造新模型

&#x1f368; 本文为[&#x1f517;365天深度学习训练营学习记录博客 &#x1f366; 参考文章&#xff1a;365天深度学习训练营 &#x1f356; 原作者&#xff1a;[K同学啊] &#x1f680; 文章来源&#xff1a;[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb4…

算法通关村第八关-黄金挑战

大家好我是苏麟 ...... 路径总和2 描述 : 给你二叉树的根节点 root 和一个整数目标和 targetSum &#xff0c;找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 题目 : LeetCode 113.路径总和2 113. 路径总和 II 分析 : 这…

Oracle OCM考试(史上最详细的介绍,需要19c OCP的证书)

Oracle 19c OCM考试和之前版本的OCM考试差不多&#xff0c;对于考生来说最大的难点是题量大&#xff0c;每场3小时&#xff0c;一共4场&#xff0c;敲键盘敲得手抽筋。姚远老师&#xff08;v:dataace&#xff09;的很多Oracle OCP学员都对19c OCM考试很有兴趣&#xff0c;这里给…

Linux输入设备应用编程(键盘,按键,触摸屏,鼠标)

目录 一 输入设备编程介绍 1.1 什么是输入设备呢&#xff1f; 1.2 什么是输入设备的应用编程&#xff1f; 1.3 input子系统 1.4 数据读取流程 1.5 应用程序如何解析数据 1.5.1 按键类事件&#xff1a; 1.5.2 相对位移事件 1.5.3 绝对位移事件 二 读取 struct input_e…

云课五分钟-07安装Opera失败-版本不匹配

前篇&#xff1a; 云课五分钟-06一段代码调试debug-AI与人工 其中已经遇到了一些问题&#xff0c;在和文心一言交互过程中&#xff0c;由于提问不合适&#xff0c;得不到所期望的结果。 那么这一节本可以避免&#xff0c;但是为了展示失败&#xff0c;需要将过程录制。 视频…

网络营销|如何利用line拓展东南亚市场

Line在亚洲地区非常流行&#xff0c;特别是在日本、台湾、泰国等地&#xff0c;是当地最受欢迎的即时通讯应用之一。 除了基本的聊天功能外&#xff0c;Line还提供了各种各样的贴图、表情包和游戏等娱乐功能&#xff0c;吸引了大量的用户。 一、选择利用line进行海外营销的原…

求组合数(笔记)

//组合数2&#xff0c;取值在1e5 //Cab a! / (a - b)! * b! #include<iostream> using namespace std; using ll long long; const ll N 1e4 9, mod 1e9 7; ll fact[N], infact[N];//阶乘&#xff0c;逆元阶乘ll qmi(ll a, ll k, ll p)//逆元模板 {ll res 1;while…

新手必看!!STM32定时器简介

一、定时器有哪些&#xff1f; 定时器分为三大类&#xff1a;基本定时器、通用定时器和高级定时器。 二、每个定时器的功能以及使用场景 1. 基本定时器&#xff08;Basic Timers&#xff09;&#xff1a; 功能&#xff1a; 基本定时器具有较为简单的功能&#xff0c;通常用于…