Theory behind GAN

假如要生成一些人脸图,实际上就是想要找到一个分布,从这个分布内sample出来的图片像是人脸,分布之外生成的就不像人脸。而GAN要做的就是找到这个distribution。

在GAN之前用的是Maximum Likelihood Estimation。

Maximum Likelihood Estimation(最大似然估计)

最大似然估计的思想是,假设数据的分布是 Pdata(x) ,定义一个分布为PG(x;θ) ,求得一组参数θ,使得PG(x;θ)Pdata(x) 越接近越好。具体步骤如下:

  1. Pdata(x) 中sample出一些样本;
  2. 对于sample出来的样本,可以计算出它们的likelihood;
  3. 计算总分likelihood L,并找到一组参数θ*  使得L最大。

MLE=Minimize KL Divergence

最大似然估计就相当于最小化的KL散度。

如果使用最大似然估计,采用高斯混合模型定义PG  ,生成的图片会非常模糊,现在使用generator产生PG 。优化的目标就是使PGPdata 越接近越好,即使得G* 越小越好,但是不知道PGPdata 的公式。

虽然不知道PGPdata 的公式,但是可以从这两个分布中做sample。可以用Discriminator来衡量PGPdata 的Divergence。训练出来的maxV(G,D) 就相当于JS divergence。

证明过程

要求V(G,D)的最大值,就是求 的最大值。

因为PGPdata 都是固定的,所以设为常数,然后通过求导求出最大值。

将求出的D* 回带入V(G,D),然后化简。

Generator 的训练目标就是,找到一个G* 去最小化PGPdata 之间的差异,即 ,由于不知道PGPdata 的具体公式,所以无法直接计算divergence。于是通过一个discriminator来计算两个分布之间的差异, 。所以最终优化目标为

假设已经把Generator固定住了,红点表示固定住G后的 ,也就是PGPdata  的差异。现在的目标是最小化这个差异,所以下图的三个网络中,G3 是最优秀的。

具体的做法就是:

  1. 首先固定G,找到一个能够使V最大的D;
  2. 然后固定D,找到能够使这个最大D情况下V最小的G。不停的迭代。

虽然L(G)中有求最大值,但是它依然可以做微分,即分段求微分。

具体算法如下:

  1. 给定一个G0
  2. 求解出使得V(D,G) 最大的D0*
  3. 利用梯度下降求解出G1 ;
  4. 利用G1 求解出使得V(D,G) 最大的D1* ,不断迭代。

其实在训练过程中不是真正的minimize JS散度,因为G在训练时变化时,V(D,G) 也会发生改变;此时由于D固定,所以JS散度会变得不再是此刻G下的JS散度了。所以要保证V(D,G0) 和V(D,G1)  很像,即G的参数变化很小。

Algorithm for GAN(Review

首先训练D,多训练几次直至收敛;之后训练G:其中第一项是与生成器无关的,由于G不能训练太多,否则会导致D无法evaluate JS,所以update一次就好。

  • In practice

理论上V是要取期望值,但是实际上是不可能的,只能用样本的均值进行估计。

论文原文在实作的时候把log⁡(1-D(x)) 换成-log⁡(D(x)) ,蓝色曲线刚开始的值很大,适合做梯度下降。其实后来实验证明两种结果都差不多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/188920.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

List is a raw type. References to generic type List<E> should be parameterized

List is a raw type. References to generic type List<E> should be parameterized 都是代码习惯问题懒

如何用继承和多态来打印个人信息

1 问题 在python中的数据类型中&#xff0c;我们常常运用继承和多态。合理地使用继承和多态可以增强程序的可扩展性使代码更简洁。那么如何使用继承和多态来打印个人信息&#xff1f; 2 方法 打印基本信息添加子类&#xff0c;再定义一个class&#xff0c;可以直接从Person类继…

Ubuntu22.04 Apache2安装SSL证书 https

一、免费证书申请 https://help.aliyun.com/zh/ssl-certificate/user-guide/overview-of-free-certificates 得到 三、配置 执行以下命令&#xff0c;打开default-ssl.conf文件。 vim /etc/apache2/sites-available/default-ssl.conf 在default-ssl.conf配置文件中&#xff…

html使用天地图写一个地图列表

一、效果图&#xff1a; 点击左侧地址列表&#xff0c;右侧地图跟着改变。 二、代码实现&#xff1a; 一进入页面时&#xff0c;通过body调用onLoad"onLoad()"函数&#xff0c;确保地图正常显示。 <body onLoad"onLoad()"><!--左侧代码-->…

面试题 Android 如何实现自定义View 固定帧率绘制

曾经遇到的面试题, 如何实现自定义View 1s内固定帧率的绘制. 当时对Android理解不深, 考虑的不全面, 直接回答了在onDraw结束时通过postDelay发送一个(1000 / 帧数)ms的延时消息触发invalidate进行下一次绘制. 但实际上这样做存在明显的问题 实际上1s绘制的帧数是不符合期望帧…

基于java web的中小型人力资源管理系统

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

[工业自动化-23]:西门子S7-15xxx编程 - 软件编程 - 西门子PLC人机界面交互HMI功能概述、硬件环境准备、软件环境准备

目录 一、什么是人机界面 二、什么是PLC人机交互界面HMI 三、人机界面设计的功能列表 四、开发主机与PLC的连接方式 五、开发主机与HMI的连接方式 六、HMI组态 一、什么是人机界面 人机界面是指人与机器或系统之间的交互界面。它是人类与计算机或其他设备之间进行信息交换…

基于STM32的蓝牙低功耗(BLE)通信方案设计与实现

蓝牙低功耗&#xff08;Bluetooth Low Energy&#xff0c;简称BLE&#xff09;是一种能够在低功耗环境下实现无线通信的技术。在物联网应用中&#xff0c;BLE被广泛应用于传感器数据采集、健康监测设备、智能家居等领域。本文将基于STM32微控制器&#xff0c;设计并实现一个简单…

鸿蒙4.0开发笔记之DevEco Studio启动时不直接打开原项目

1、想要在DevEco Studio启动时不直接打开关闭前的那个项目&#xff0c;可以在设置中进行。 有两个位置可以进入“设置”&#xff0c;一个是左上角的File>Settings&#xff0c;二是右上方的设置图标。 2、进入Settings界面以后&#xff0c;选择Appearance&Behavior下面…

使用Docker部署Python Flask应用的完整教程

一、引言 Docker是一种开源的容器化平台&#xff0c;可以将应用程序及其依赖项打包成一个独立的容器&#xff0c;实现快速部署和跨平台运行。本文将详细介绍如何使用Docker来部署Python Flask应用程序&#xff0c;帮助开发者更高效地构建和部署应用。 二、准备工作 在开始之前…

Vellum —— Constraint 约束

目录 Stretch Bend Pin Drag 解算器对DOP外节点的约束属性&#xff0c;只会读取起始帧的值&#xff1b; Stretch 保持点间的初始距离&#xff1b; Stiffness 越高的stiffness&#xff0c;就需要越多的迭代来收敛&#xff0c;如constraint iterations或substeps(子步会更好)…

jenkins清理缓存命令

def jobName "yi-cloud-operation" //删除的项目名称 def maxNumber 300 // 保留的最小编号&#xff0c;意味着小于该编号的构建都将被删除 Jenkins.instance.getItemByFullName(jobName).builds.findAll { it.number < maxNumber }.each { it.delet…