DMA原理和应用

目录

1.什么是DMA

2.DMA的意义

3.DMA搬运的数据和方式

4.DMA 控制器和通道

5.DMA通道的优先级

6.DMA传输方式

7.DMA应用

实验一: 内存到内存搬运

CubeMX配置:

​编辑用到的库函数:

代码实现思路:

实验二: 内存到外设搬运

CubeMX配置:

​编辑用到的库函数:

代码实现思路:

实验三: 外设到内存搬运

CubeMX配置

用到的库函数

代码实现思路:


1.什么是DMA

DMA(Direct Memory Access,直接存储器访问) 提供在外设与内存、存储器和存储器、外设与外设之间的高速数据传输使用。它允许不同速度的硬件装置来沟通,而不需要依赖于CPU,在这个时间中,CPU对于内存的工作来说就无法使用。

简单描述:DMA就是一个数据搬运工!

2.DMA的意义

代替 CPU 搬运数据,为 CPU 减负

  • 1. 数据搬运的工作比较耗时间;
  • 2. 数据搬运工作时效要求高(有数据来就要搬走);
  • 3. 没啥技术含量(CPU 节约出来的时间可以处理更重要的事)。

3.DMA搬运的数据和方式

DMA搬运存储器、外设的数据

这里的外设指的是spi、usart、iic、adc 等基于APB1 、APB2或AHB时钟的外设,而这里的存储器包括自身的闪存(flash)或者内存(SRAM)以及外设的存储设备都可以作为访问地源或者目的

三种搬运方式:

  • 存储器→存储器(例如:复制某特别大的数据buf)
  • 存储器→外设 (例如:将某数据buf写入串口TDR寄存器)
  • 外设→存储器 (例如:将串口RDR寄存器写入某数据buf)

存储器→存储器

存储器→外设

外设→存储器

4.DMA 控制器和通道

STM32F103有2个 DMA 控制器,DMA1有7个通道,DMA2有5个通道。 一个通道每次只能搬运一个外设的数据!! 如果同时有多个外设的 DMA 请求,则按照优先级进行响应。

DMA1有7个通道:

DMA2有5个通道:

5.DMA通道的优先级

优先级管理采用软件+硬件:

  • 软件: 每个通道的优先级可以在DMA_CCRx寄存器中设置,有4个等级
  • 最高级>高级>中级>低级
  • 硬件: 如果2个请求,它们的软件优先级相同,则较低编号的通道比较高编号的通道有较高的优先权。
  • 比如:如果软件优先级相同,通道2优先于通道4

6.DMA传输方式

DMA_Mode_Normal(正常模式)

  • 一次DMA数据传输完后,停止DMA传送 ,也就是只传输一次

DMA_Mode_Circular(循环传输模式)

  • 当传输结束时,硬件自动会将传输数据量寄存器进行重装,进行下一轮的数据传输。 也就是 多次传输模式

指针递增模式:

  • 外设和存储器指针在每次传输后可以自动向后递增或保持常量。
  • 当设置为增量模式时,下一个要 传输的地址将是前一个地址加上增量值。

7.DMA应用

实验一: 内存到内存搬运

实验要求:

使用DMA的方式将数组A的内容复制到数组B中,搬运完之后将数组B的内容打印到屏幕。

CubeMX配置:

DMA 配置:

串口配置:


用到的库函数:

1. HAL_DMA_Start

HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t
DstAddress, uint32_t DataLength)
  • 参数一:DMA_HandleTypeDef *hdma,DMA通道句柄
  • 参数二:uint32_t SrcAddress,源内存地址
  • 参数三:uint32_t DstAddress,目标内存地址
  • 参数四:uint32_t DataLength,传输数据长度。注意:需要乘以sizeof(uint32_t)
  • 返回值:HAL_StatusTypeDef,HAL状态(OK,busy,ERROR,TIMEOUT)

2. __HAL_DMA_GET_FLAG

#define __HAL_DMA_GET_FLAG(__HANDLE__, __FLAG__) (DMA1->ISR & (__FLAG__))
  • 参数一:HANDLE,DMA通道句柄
  • 参数二:FLAG,数据传输标志
  • DMA_FLAG_TCx表示数据传输完成标志
  • 返回值:FLAG的值(SET/RESET)
代码实现思路:
  • 1. 开启数据传输
  • 2. 等待数据传输完成
  • 3. 打印数组内容

代码示例:

#include <stdio.h>uint32_t src_buf[16] = {	0x00000000,0x11111111,0x22222222,0x33333333,0x44444444,0x55555555,0x66666666,0x77777777,0x88888888,0x99999999,0xAAAAAAAA,0xBBBBBBBB,0xCCCCCCCC,0xDDDDDDDD,0xEEEEEEEE,0xFFFFFFFF
};
uint32_t des_buf[16];//重定向printf
int fputc(int ch, FILE *f)
{      unsigned char temp[1]={ch};HAL_UART_Transmit(&huart1,temp,1,0xffff);  return ch;
}int main(void)
{int i= 0;
/*
1. 开启数据传输
2. 等待数据传输完成
3. 打印数组内容
*/HAL_Init();SystemClock_Config();MX_GPIO_Init();MX_DMA_Init();MX_USART1_UART_Init();//1. 开启数据传输HAL_DMA_Start(&hdma_memtomem_dma1_channel1,(uint32_t)src_buf,(uint32_t)des_buf,sizeof(uint32_t) * 16);//2. 等待数据传输完成while(__HAL_DMA_GET_FLAG(&hdma_memtomem_dma1_channel1, DMA_FLAG_TC1) == RESET);//3. 打印数组内容for (i = 0; i < 16; i++)printf("Buf[%d] = %X\r\n", i, des_buf[i]);while (1){}}

烧录代码,打开串口助手:

实验二: 内存到外设搬运

实验要求:

使用DMA的方式将内存数据搬运到串口1发送寄存器,同时闪烁LED1。

CubeMX配置:

DMA配置:

串口配置:


用到的库函数:

HAL_UART_Transmit_DMA

HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData,
uint16_t Size)
  • 参数一:UART_HandleTypeDef *huart,串口句柄
  • 参数二:uint8_t *pData,待发送数据首地址
  • 参数三:uint16_t Size,待发送数据长度
  • 返回值:HAL_StatusTypeDef,HAL状态(OK,busy,ERROR,TIMEOUT)
代码实现思路:
  • 1. 准备数据
  • 2. 将数据通过串口DMA发送

代码示例:

#include "main.h"
#include "dma.h"
#include "usart.h"
#include "gpio.h"unsigned char sendbuf[100];int main(void)
{int i;//1. 准备数据for(i=0;i<100;i++){sendbuf[i] = 'z';}//2. 将数据通过串口DMA发送HAL_UART_Transmit_DMA(&huart1,sendbuf,100);while (1){HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_8);HAL_Delay(300);}
}

烧录代码,打开串口助手

实验三: 外设到内存搬运

实验要求:

使用DMA的方式将串口接收缓存寄存器的值搬运到内存中,同时闪烁LED1。

CubeMX配置

DMA配置:

串口和中断配置:

用到的库函数

1. __HAL_UART_ENABLE

#define __HAL_UART_ENABLE_IT(__HANDLE__, __INTERRUPT__) ((((__INTERRUPT__) >> 28U)
== UART_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 |= ((__INTERRUPT__) &
UART_IT_MASK)): \
(((__INTERRUPT__) >> 28U)
== UART_CR2_REG_INDEX)? ((__HANDLE__)->Instance->CR2 |= ((__INTERRUPT__) &
UART_IT_MASK)): \
((__HANDLE__)->Instance-
>CR3 |= ((__INTERRUPT__) & UART_IT_MASK)))
  • 参数一:HANDLE,串口句柄
  • 参数二:INTERRUPT,需要使能的中断
  • 返回值:无

2. HAL_UART_Receive_DMA

HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData,
uint16_t Size)
  • 参数一:UART_HandleTypeDef *huart,串口句柄
  • 参数二:uint8_t *pData,接收缓存首地址
  • 参数三:uint16_t Size,接收缓存长度
  • 返回值:HAL_StatusTypeDef,HAL状态(OK,busy,ERROR,TIMEOUT)

3. __HAL_UART_GET_FLAG

#define __HAL_UART_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR &
(__FLAG__)) == (__FLAG__))
  • 参数一:HANDLE,串口句柄
  • 参数二:FLAG,需要查看的FLAG
  • 返回值:FLAG的值

4. __HAL_UART_CLEAR_IDLEFLAG

#define __HAL_UART_CLEAR_IDLEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)
  • 参数一:HANDLE,串口句柄
  • 返回值:无

5. HAL_UART_DMAStop

HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
  • 参数一:UART_HandleTypeDef *huart,串口句柄
  • 返回值:HAL_StatusTypeDef,HAL状态(OK,busy,ERROR,TIMEOUT)

6. __HAL_DMA_GET_COUNTER

#define __HAL_DMA_GET_COUNTER(__HANDLE__) ((__HANDLE__)->Instance->CNDTR)
  • 参数一:HANDLE,串口句柄
  • 返回值:未传输数据大小
代码实现思路:

如何判断串口接收是否完成?如何知道串口收到数据的长度?

使用串口空闲中断(IDLE)!

  • 串口空闲时,触发空闲中断
  • 空闲中断标志位由硬件置1,软件清零

利用串口空闲中断,可以用如下流程实现DMA控制的任意长数据接收:

  • 1. 使能IDLE空闲中断
  • 2. 使能DMA接收中断
  • 3. 收到串口接收中断,DMA不断传输数据到缓冲区
  • 4. 一帧数据接收完毕,串口暂时空闲,触发串口空闲中断
  • 5. 在中断服务函数中,清除中断标志位,关闭DMA传输(防止干扰)
  • 6. 计算刚才收到了多少个字节的数据
  • 7. 处理缓冲区数据,开启DMA传输,开始下一帧接收

代码示例:

main.c

uint8_t rcvBuf[BUF_SIZE]; // 接收数据缓存数组
uint8_t rcvLen = 0; // 接收一帧数据的长度
__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE); // 使能IDLE空闲中断
HAL_UART_Receive_DMA(&huart1,rcvBuf,100); // 使能DMA接收中断
while (1)
{HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_8);HAL_Delay(300);
}

main.h

#define BUF_SIZE 100

stm32f1xx_it.c

extern uint8_t rcvBuf[BUF_SIZE];
extern uint8_t rcvLen;void USART1_IRQHandler(void)
{/* USER CODE BEGIN USART1_IRQn 0 *//* USER CODE END USART1_IRQn 0 */HAL_UART_IRQHandler(&huart1);/* USER CODE BEGIN USART1_IRQn 1 */if((__HAL_UART_GET_FLAG(&huart1,UART_FLAG_IDLE) == SET)) // 判断IDLE标志位是否被置位{__HAL_UART_CLEAR_IDLEFLAG(&huart1);// 清除标志位HAL_UART_DMAStop(&huart1); // 停止DMA传输,防止干扰uint8_t temp=__HAL_DMA_GET_COUNTER(&hdma_usart1_rx);rcvLen = BUF_SIZE - temp; //计算数据长度HAL_UART_Transmit_DMA(&huart1, rcvBuf, rcvLen);//发送数据HAL_UART_Receive_DMA(&huart1, rcvBuf, BUF_SIZE);//开启DMA}/* USER CODE END USART1_IRQn 1 */
}

烧录代码,打开串口助手,将接收到的数据通过串口发送到上位机:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/188950.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

redis + celery

首先&#xff0c;部署Redis数据库&#xff1a; 先下载包&#xff1a; wget http://download.redis.io/releases/redis-5.0.7.tar.gz 解压redis包&#xff1a; tar -xvf redis-5.0.7.tar.gz 编译&#xff1a; make sudo make install &#xff08;这样没有指定安装目录&#…

nodejs+vue面向中小学课堂教学辅助软件系统的设计与实现-微信小程序-安卓-python-PHP-计算机毕业设计

主要功能有&#xff0c;管理员通过后台会对此教学辅助进行审核&#xff0c;管理员在还可以进行首页、个人中心、学生管理、教师管理、班级信息管理、科目名称管理、课程信息管理、教学资料管理、作业信息管理、作业提交管理、作业成绩管理、在线考试管理、试题管理、考试管理、…

为什么要使用动态代理IP?数据采集使用动态代理有哪些优势?

随着互联网的普及&#xff0c;数据采集已经成为企业、营销人员和数据分析师的重要工作之一。然而&#xff0c;在采集数据的过程中&#xff0c;经常会遇到一些问题&#xff0c;如IP被封禁、访问受限等。为了解决这些问题&#xff0c;动态代理IP应运而生。那么&#xff0c;为什么…

Stable Diffusion进阶玩法说明

之前章节介绍了Stable Diffusion的入门&#xff0c;介绍了文生图的魅力&#xff0c;可以生成很多漂亮的照片&#xff0c;非常棒 传送门&#xff1a; Stable Diffusion新手村-我们一起完成AI绘画-CSDN博客 那我们今天就进一步讲讲这个Stable Diffusion还能做些什么&#xff0c; …

腾讯云4核8G服务器配置价格表,轻量和CVM标准型S5实例

腾讯云4核8G服务器S5和轻量应用服务器优惠价格表&#xff0c;轻量应用服务器和CVM云服务器均有活动&#xff0c;云服务器CVM标准型S5实例4核8G配置价格15个月1437.3元&#xff0c;5年6490.44元&#xff0c;轻量应用服务器4核8G12M带宽一年446元、529元15个月&#xff0c;腾讯云…

Redis(列表List)

使用LPUSH从头部添加元素&#xff0c;可以一次添加一个或多个。 使用LRANGE 查看列表中的数据&#xff0c;0表示起始位置&#xff0c;-1表示结束位置。 当然也可以使用RPUSH来从尾部添加元素。 可以使用RPOP从尾部删除元素&#xff0c;会返回删除的元素的值。 同理使用LPOP…

瑞吉外卖Day06

1.用户地址 1.1实体类 /*** 地址簿*/ Data public class AddressBook implements Serializable {private static final long serialVersionUID 1L;private Long id;//用户idprivate Long userId;//收货人private String consignee;//手机号private String phone;//性别 0 女…

【完美世界】石昊身上宝术至尊骨、上苍之手和轮回宝术哪个最强

Hello,小伙伴们&#xff0c;我是小郑继续为大家深度解析国漫资讯。 完美世界动画中&#xff0c;石昊通过举起天人族的镇教之宝飞仙石&#xff0c;终于补全了第一块至尊骨的天赋宝术-上苍之手。然而&#xff0c;这只是开始&#xff0c;上苍之手的终极奥义还需要他慢慢领悟。 在…

智能指针面试题

智能指针被问到的概率还是很大的&#xff0c;特别是Shared_ptr&#xff0c;最好会手撕&#xff0c;亲身经历&#xff01; 基本概念 1. RAll RAII&#xff08;Resource Acquisition Is Initialization&#xff09;是一种利用对象生命周期来控制程序资源&#xff08;如内存、文…

简单介绍二分类问题评价指标

正确率(Accuracy) Accuracy ​(TP TN)/(TP TN FP FN)精准率(Precision) 记忆&#xff1a;在识别出某标签中正确的比例&#xff1b; 比如识别为某标签的一共有105个&#xff0c;其中有95个是识别对的&#xff0c;那Precision就是95/105&#xff1b; TP/(TPFP)召回率(Recall…

python趣味编程-5分钟实现一个Tic Tac Toe游戏(含源码、步骤讲解)

The Tic Tac Toe In Python是用 Python 编程语言编写的,这个Tic Tac Toe Game In Python是一个简单的基于 GUI 的策略游戏板,非常容易理解和使用。 所有的游戏规则都是一样的,就像我们玩实时井字棋一样,这是一个简单的多人游戏。 Python 中的 Tic Tac Toe 游戏:项目信息 …

Python----图像的手绘效果

图像的数组表示 图像是有规则的二维数据&#xff0c;可以用numpy 库将图像转换成数组对象 : from PIL import Image import numpy as np imnp.array(Image.open("D://np.jpg")) print(im.shape,im.dtype)结果&#xff1a; 图像转换对应的ndarray 类型是3 维数据&am…