淘宝的“双十一”购物节有各种促销活动,比如“满200元减50元”。假设你女朋友的购物车中有n个(n>100)想买的商品,她希望从里面选几个,在凑够满减条件的前提下,让选出来的商品价格总和最大程度地接近满减条件(200元),这样就可以极大限度地“薅羊毛”。作为程序员的你,能不能编个代码来帮她搞定呢?
要想高效地解决这个问题,就要用到我们今天讲的动态规划(Dynamic Programming)。
动态规划学习路线
动态规划比较适合用来求解最优问题,比如求最大值、最小值等等。它可以非常显著地降低时间复杂度,提高代码的执行效率。不过,它也是出了名的难学。它的主要学习难点跟递归类似,那就是,求解问题的过程不太符合人类常规的思维方式。对于新手来说,要想入门确实不容易。不过,等你掌握了之后,你会发现,实际上并没有想象中那么难。
为了让你更容易理解动态规划,我分了三节给你讲解。这三节分别是,初识动态规划、动态规划理论、动态规划实战。
第一节,我会通过两个非常经典的动态规划问题模型,向你展示我们为什么需要动态规划,以及动态规划解题方法是如何演化出来的。实际上,你只要掌握了这两个例子的解决思路,对于其他很多动态规划问题,你都可以套用类似的思路来解决。
第二节,我会总结动态规划适合解决的问题的特征,以及动态规划解题思路。除此之外,我还会将贪心、分治、回溯、动态规划这四种算法思想放在一起,对比分析它们各自的特点以及适用的场景。
第三节,我会教你应用第二节讲的动态规划理论知识,实战解决三个非常经典的动态规划问题,加深你对理论的理解。弄懂了这三节中的例子,对于动态规划这个知识点,你就算是入门了。
0-1背包问题
我在讲贪心算法、回溯算法的时候,多次讲到背包问题。今天,我们依旧拿这个问题来举例。
对于一组不同重量、不可分割的物品,我们需要选择一些装入背包,在满足背包最大重量限制的前提下,背包中物品总重量的最大值是多少呢?
关于这个问题,我们上一节讲了回溯的解决方法,也就是穷举搜索所有可能的装法,然后找出满足条件的最大值。不过,回溯算法的复杂度比较高,是指数级别的。那有没有什么规律,可以有效降低时间复杂度呢?我们一起来看看。
// 回溯算法实现。注意:我把输入的变量都定义成了成员变量。
private int maxW = Integer.MIN_VALUE; // 结果放到maxW中
private int[] weight = {2,2,4,6,3}; // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
public void f(int i, int cw) { // 调用f(0, 0)if (cw == w || i == n) { // cw==w表示装满了,i==n表示物品都考察完了if (cw > maxW) maxW = cw;return;}f(i+1, cw); // 选择不装第i个物品if (cw + weight[i] <= w) {f(i+1,cw + weight[i]); // 选择装第i个物品}
}
规律是不是不好找?那我们就举个例子、画个图看看。我们假设背包的最大承载重量是9。我们有5个不同的物品,每个物品的重量分别是2,2,4,6,3。如果我们把这个例子的回溯求解过程,用递归树画出来,就是下面这个样子:
递归树中的每个节点表示一种状态,我们用(i, cw)来表示。其中,i表示将要决策第几个物品是否装入背包,cw表示当前背包中物品的总重量。比如,(2,2)表示我们将要决策第2个物品是否装入背包,在决策前,背包中物品的总重量是2。
从递归树中,你应该能会发现,有些子问题的求解是重复的,比如图中f(2, 2)和f(3,4)都被重复计算了两次。我们可以借助递归那一节讲的“备忘录”的解决方式,记录已经计算好的f(i, cw),当再次计算到重复的f(i, cw)的时候,可以直接从备忘录中取出来用,就不用再递归计算了,这样就可以避免冗余计算。
private int maxW = Integer.MIN_VALUE; // 结果放到maxW中
private int[] weight = {2,2,4,6,3}; // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
private boolean[][] mem = new boolean[5][10]; // 备忘录,默认值false
public void f(int i, int cw) { // 调用f(0, 0)if (cw == w || i == n) { // cw==w表示装满了,i==n表示物品都考察完了if (cw > maxW) maxW