2023.11.18 每日一题(AI自生成应用)【C++】【Python】【Java】【Go】 动态路径分析

目录

一、编程挑战:动态时间序列分析

实际应用:

实现提示:

二、实现

1. C++

2. Python

3. JAVA

4. Go


一、编程挑战:动态时间序列分析

问题描述
假设你是一名软件工程师,需要开发一个应用来分析和预测股市的动态变化。你的任务是实现一个算法,能够接收一个股票价格的时间序列,并预测接下来的价格走势。

输出
一个整数,表示基于当前数据,预测的下一个交易日的股票收盘价。

算法要求

  • 使用滑动窗口方法来分析股票价格的趋势。
  • 实现一个简单的线性回归模型来预测下一个价格。
  • 你可以选择使用任何编程语言来实现这个算法。

示例

输入: [100, 101, 102, 103, 104]
预测输出: 105

实际应用:

这种类型的算法在金融技术领域非常有用,尤其是在股票市场分析和预测中。通过分析历史价格数据,算法可以帮助投资者做出更明智的投资决策。

实现提示:

  • 使用滑动窗口来计算过去几天的平均价格,并用这个平均价格来预测未来的价格。
  • 实现线性回归模型时,可以考虑使用最小二乘法来找到最佳拟合线。

二、实现

1. C++

#include <iostream>
#include <vector>using namespace std;// 函数:计算线性回归并预测下一个值
int predictNextPrice(const vector<int>& prices) {int n = prices.size();if (n <= 1) return -1;  // 如果数据不足,返回-1double sumX = 0, sumY = 0, sumX2 = 0, sumXY = 0;for (int i = 0; i < n; ++i) {sumX += i;sumY += prices[i];sumX2 += i * i;sumXY += i * prices[i];}double xMean = sumX / n;double yMean = sumY / n;double denominator = n * sumX2 - sumX * sumX;if (denominator == 0) return -1;  // 防止除以0double a = (n * sumXY - sumX * sumY) / denominator;double b = (sumY - a * sumX) / n;// 使用得到的线性模型来预测下一个价格return static_cast<int>(a * n + b);
}int main() {vector<int> prices = {100, 101, 102, 103, 104};  // 示例数据int predictedPrice = predictNextPrice(prices);cout << "预测的下一个价格是: " << predictedPrice << endl;return 0;
}

        这段代码首先计算了时间序列中的平均值和股票价格的平均值,然后用最小二乘法求解线性回归方程的系数。最后,它使用这个线性方程来预测下一个价格。这种简单的线性回归模型在真实世界的股市预测中可能过于简化,但它提供了一个关于如何使用统计方法来分析和预测数据的基本框架。

2. Python

import numpy as npdef predict_next_price(prices):n = len(prices)if n <= 1:return -1  # 如果数据不足,返回-1# 创建时间序列(0, 1, 2, ..., n-1)X = np.arange(n)Y = np.array(prices)# 计算X和Y的均值X_mean = np.mean(X)Y_mean = np.mean(Y)# 计算系数num = np.sum((X - X_mean) * (Y - Y_mean))den = np.sum((X - X_mean) ** 2)if den == 0:return -1  # 防止除以0a = num / denb = Y_mean - a * X_mean# 使用得到的线性模型预测下一个价格return a * n + b# 示例数据
prices = [100, 101, 102, 103, 104]
predicted_price = predict_next_price(prices)
print("预测的下一个价格是:", predicted_price)

3. JAVA

public class StockPricePredictor {public static void main(String[] args) {int[] prices = {100, 101, 102, 103, 104}; // 示例数据int predictedPrice = predictNextPrice(prices);System.out.println("预测的下一个价格是: " + predictedPrice);}private static int predictNextPrice(int[] prices) {int n = prices.length;if (n <= 1) {return -1;  // 如果数据不足,返回-1}double sumX = 0, sumY = 0, sumX2 = 0, sumXY = 0;for (int i = 0; i < n; i++) {sumX += i;sumY += prices[i];sumX2 += i * i;sumXY += i * prices[i];}double xMean = sumX / n;double yMean = sumY / n;double denominator = n * sumX2 - sumX * sumX;if (denominator == 0) {return -1;  // 防止除以0}double a = (n * sumXY - sumX * sumY) / denominator;double b = (sumY - a * sumX) / n;// 使用得到的线性模型来预测下一个价格return (int) (a * n + b);}
}

4. Go

package mainimport ("fmt"
)func predictNextPrice(prices []int) int {n := len(prices)if n <= 1 {return -1 // 如果数据不足,返回-1}sumX, sumY, sumX2, sumXY := 0.0, 0.0, 0.0, 0.0for i := 0; i < n; i++ {sumX += float64(i)sumY += float64(prices[i])sumX2 += float64(i * i)sumXY += float64(i) * float64(prices[i])}xMean := sumX / float64(n)yMean := sumY / float64(n)denominator := float64(n)*sumX2 - sumX*sumXif denominator == 0 {return -1 // 防止除以0}a := (float64(n)*sumXY - sumX*sumY) / denominatorb := (sumY - a*sumX) / float64(n)// 使用得到的线性模型来预测下一个价格return int(a*float64(n) + b)
}func main() {prices := []int{100, 101, 102, 103, 104} // 示例数据predictedPrice := predictNextPrice(prices)fmt.Printf("预测的下一个价格是: %d\n", predictedPrice)
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/189671.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Deep learning for fine-grained image analysis: A survey》阅读笔记

论文标题 《Deep learning for fine-grained image analysis: A survey》 作者 魏秀参&#xff0c;旷世研究院 初读 摘要 细粒度图像分析&#xff08;FGIA&#xff09;的任务是分析从属类别的视觉对象。 细粒度性质引起的类间小变化和类内大变化使其成为一个具有挑战性的…

鸿蒙ToastDialog内嵌一个xml页面会弹跳到一个新页面《解决》

ToastDialog 土司组件 1.问题展示2.代码展示3.问题分析 1.问题展示 0.理想效果 错误效果: 1.首页展示页面 (未点击按钮前) 2.点击按钮之后&#xff0c;弹窗不在同一个位置 2.代码展示 1.点击按钮的 <?xml version"1.0" encoding"utf-8"?> <…

场景交互与场景漫游-场景漫游器(6)

场景漫游 在浏览整个三维场景时&#xff0c;矩阵变换是非常关键的&#xff0c;通过适当的矩阵变换可以获得各种移动或者渲染效果。因此&#xff0c;在编写自己的场景漫游操作器时&#xff0c;如何作出符合逻辑的矩阵操作器是非常重要的&#xff0c;但这对初学者来说还是有一定难…

37 关于 undo 日志

前言 undo 和 redo 是在 mysql 中 事务, 或者 异常恢复 的场景下面 经常会看到的两个概念 这里 来看一下 undo, undo 主要是用于 事务回滚 的场景下面 测试表结构如下 CREATE TABLE tz_test (id int(11) unsigned NOT NULL AUTO_INCREMENT,field1 varchar(128) DEFAULT NUL…

YB4019是一款完整的单电池锂离子恒流/恒压线性充电器电池

YB4019 耐压18V 1A线性双节8.4V 锂电充电芯片 概述&#xff1a; YB4019是一款完整的单电池锂离子恒流/恒压线性充电器电池。底部采用热增强ESOP8封装&#xff0c;外部组件数量低使YB4019成为便携式应用的理想选择。此外&#xff0c;YB4019设计用于在USB电源规格范围内工作。Y…

Docker Swarm: 容器编排的力量和优势深度解析

文章目录 Docker Swarm的核心概念1. 节点&#xff08;Node&#xff09;2. 服务&#xff08;Service&#xff09;3. 栈&#xff08;Stack&#xff09; 使用Docker Swarm1. 初始化Swarm2. 加入节点3. 创建服务4. 扩展和缩减服务5. 管理栈6. 管理服务更新 Docker Swarm的优势深度解…

vivado产生报告阅读分析7-时序报告3

1、“ Timing Summary Report ”详情 “ Timing Summary Report ” &#xff08; 时序汇总报告 &#xff09; 包含下列部分 &#xff1a; • “ General Information ”部分 • “ Timer Settings ”部分 • “ Design Timing Summary ”部分 • “ Clock Summary ”部…

C语言每日一题(32)环形链表

力扣网 141.环形链表 题目描述 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾…

Hangfire.Pro 3.0 Crack

Hangfire.Pro 有限的存储支持 Hangfire Pro 是一组扩展包&#xff0c;允许使用批处理创建复杂的后台作业工作流程&#xff0c;并提供对超快速Redis作为作业存储的支持 请注意&#xff0c;仅在使用Hangfire.SqlServer、Hangfire.Pro.Redis或Hangfire.InMemory包作为作业存储时才…

Android并发编程与多线程

一、Android线程基础 1.线程和进程 一个进程最少一个线程&#xff0c;进程可以包含多个线程进程在执行过程中拥有独立的内存空间&#xff0c;而线程运行在进程内 2.线程的创建方式 new Thread&#xff1a; 缺点&#xff1a;缺乏统一管理&#xff0c;可能无限制创建线程&…

excel怎么能锁住行 和/或 列的自增长,保证粘贴公式的时候不自增长或者只有部分自增长

例如在C4单元格中输入了公式&#xff1a; 现在如果把C4拷贝到C5&#xff0c;D3会自增长为D4&#xff1a; 现在如果想拷贝的时候不自增长&#xff0c;可以先把光标放到C4单元格&#xff0c;然后按F4键&#xff0c;行和列的前面加上了$符号&#xff0c;锁定了&#xff1a; …

单稳态中间继电器\UEG/A-2H/220V 8A导轨安装 JOSEF约瑟

UEG系列中间继电器 UEG/A-2H2D中间继电器UEG/A-4H4D中间继电器UEG/A-2D中间继电器 UEG/A-2H中间继电器UEG/A-4H中间继电器UEG/A-4D中间继电器 UEG/A-6H中间继电器UEG/A-6D中间继电器UEG/A-8H中间继电器 UEG/A-10D中间继电器UEG/A-10H中间继电器UEG/A-2DPDT中间继电器 UEG/A-4DP…