【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Mask Decoder

  论文:Segment Anything
  代码:https://github.com/facebookresearch/segment-anything

  系列篇:
  (1)【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder
  (2)【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Prompt Encoder

  本篇示例依然采用系列篇中的狗狗图像运行代码,预测部分代码如下:

input_point = np.array([[1300, 800]])   # 输入point的坐标
input_label = np.array([1])   # label=1表示前景, label=0表示背景
# 输入box的坐标,(700,400)为左上角坐标, (1900,1100)为右下角坐标
input_box = np.array([[700, 400, 1900, 1100]])   
# 调用预测函数
masks, scores, logits = predictor.predict(point_coords=input_point,point_labels=input_label,box=input_box,multimask_output=True,
)

  


1. Mask Decoder代码解析

(1)输入参数

  在【segment_anything/predictor.py --> SamPredictor类 -->predict_torch函数】中调用了mask_decoder实现mask预测,如下所示:

low_res_masks, iou_predictions = self.model.mask_decoder(image_embeddings=self.features,image_pe=self.model.prompt_encoder.get_dense_pe(),sparse_prompt_embeddings=sparse_embeddings,dense_prompt_embeddings=dense_embeddings,multimask_output=multimask_output,)

  ①参数self.features为input_image经过image_encoder嵌入后的向量,本例中大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

  ②参数sparse_embeddings为prompt point和prompt box经过prompt_encoder得到的嵌入向量,本例中其大小为 [ 1 , 3 , 256 ] {[1, 3, 256]} [1,3,256]

  ③参数dense_embeddings在本例中为无prompt mask输入时采用 nn.Embedding 的预定义嵌入向量, 其大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

  ④参数multimask_output是bool型参数,默认为True,支持多mask输出;

  ⑤参数self.model.prompt_encoder.get_dense_pe()调用PositionEmbeddingRandom实现位置编码,其大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

  def get_dense_pe(self) -> torch.Tensor:return self.pe_layer(self.image_embedding_size).unsqueeze(0)

(2)MaskDecoder类

位置:【segment_anything/modeling/mask_decoder.py -->MaskDecoder类】
作用: 初始化网络结构,并调用predict_masks函数实现mask和iou预测

  先看MaskDecoder的 _ _ i n i t _ _ {\_\_init\_\_} __init__ 初始化函数和 f o r w a r d {forward} forward 函数:

class MaskDecoder(nn.Module):def __init__(self,*,transformer_dim: int,transformer: nn.Module,num_multimask_outputs: int = 3,activation: Type[nn.Module] = nn.GELU,iou_head_depth: int = 3,iou_head_hidden_dim: int = 256,) -> None:super().__init__()self.transformer_dim = transformer_dim   # transformer的通道维度 = 256self.transformer = transformer  # 用于mask预测的transformer = TwoWayTransformerself.num_multimask_outputs = num_multimask_outputs  # 消除歧义时需要的mask数量 = 3self.iou_token = nn.Embedding(1, transformer_dim)  # (1, 256)self.num_mask_tokens = num_multimask_outputs + 1   # mask数目加1 = 4self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)  # (4, 256)# 以反卷积实现4倍上采样self.output_upscaling = nn.Sequential(nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),LayerNorm2d(transformer_dim // 4),activation(),nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),activation(),)# 4个mask对应的mlpself.output_hypernetworks_mlps = nn.ModuleList([MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)for i in range(self.num_mask_tokens)])# iou预测对应的mlpself.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)def forward(self,image_embeddings: torch.Tensor,image_pe: torch.Tensor,sparse_prompt_embeddings: torch.Tensor,dense_prompt_embeddings: torch.Tensor,multimask_output: bool,) -> Tuple[torch.Tensor, torch.Tensor]:masks, iou_pred = self.predict_masks(image_embeddings=image_embeddings,  # image encoder嵌入 [1, 256, 64, 64]image_pe=image_pe,  # 图像嵌入大小对应的位置编码 [1, 256, 64, 64]sparse_prompt_embeddings=sparse_prompt_embeddings,  # prompt point和box嵌入 [1, 3, 256]dense_prompt_embeddings=dense_prompt_embeddings,  # prompt mask嵌入[1, 256, 64, 64])  # 输出mask.size()=[1,4,256,256], iou_pred.size()=[1,4]# Select the correct mask or masks for outputif multimask_output:mask_slice = slice(1, None)   # 从索引1开始取后面全部else:mask_slice = slice(0, 1)   # 从索引0开始取到1结束masks = masks[:, mask_slice, :, :]  # [1, 3, 256, 256]iou_pred = iou_pred[:, mask_slice]  # [1, 3]return masks, iou_pred

  传送门:【python函数】内置函数slice()用法解析

   f o r w a r d {forward} forward 的过程中主要完成了 predict_masks 函数调用;而在 _ _ i n i t _ _ {\_\_init\_\_} __init__函数中定义了 t r a n s f o r m e r {transformer} transformer o u t p u t _ u p s c a l i n g {output\_upscaling} output_upscaling o u t p u t _ h y p e r n e t w o r k s _ m l p s {output\_hypernetworks\_mlps} output_hypernetworks_mlps i o u _ p r e d i c t i o n _ h e a d {iou\_prediction\_head} iou_prediction_head 这四个玩意儿,接下来咱来瞅瞅他们是啥样的。


  ① transformer: 在【segment_anything/build_sam.py】中可以看到为transformer定义为TwoWayTransformer,prompt_embed_dim参数为256。

        mask_decoder=MaskDecoder(num_multimask_outputs=3,transformer=TwoWayTransformer(depth=2,embedding_dim=prompt_embed_dim,  # 256mlp_dim=2048,num_heads=8,),transformer_dim=prompt_embed_dim,iou_head_depth=3,iou_head_hidden_dim=256,),

  TwoWayTransformer 结构如下:

class TwoWayTransformer(nn.Module):def __init__(self,depth: int,embedding_dim: int,num_heads: int,mlp_dim: int,activation: Type[nn.Module] = nn.ReLU,attention_downsample_rate: int = 2,) -> None:super().__init__()self.depth = depth   # =2self.embedding_dim = embedding_dim  # =256self.num_heads = num_heads  # =8self.mlp_dim = mlp_dim  # =2048self.layers = nn.ModuleList()# 2个TwoWayAttentionBlock模块for i in range(depth):self.layers.append(TwoWayAttentionBlock(embedding_dim=embedding_dim,  # 256num_heads=num_heads,  # 8mlp_dim=mlp_dim,  # 2048activation=activation,  # nn.ReLUattention_downsample_rate=attention_downsample_rate,  # 降采样率=2skip_first_layer_pe=(i == 0),  # 第1个TwoWayAttentionBlock为True, 第2个TwoWayAttentionBlock为False))# 1个Attention模块self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)self.norm_final_attn = nn.LayerNorm(embedding_dim)def forward(self,image_embedding: Tensor,  # 图像编码:[1,256,64,64]image_pe: Tensor,   # 图像位置编码:[1,256,64,64]point_embedding: Tensor,   # iou_token,mask_tokens和sparse_prompt_embeddings的拼接向量:[1,8,256]) -> Tuple[Tensor, Tensor]:# BxCxHxW -> BxHWxC == B x N_image_tokens x Cbs, c, h, w = image_embedding.shape  # [1, 256, 64, 64]image_embedding = image_embedding.flatten(2).permute(0, 2, 1)  # [1,4096,256]image_pe = image_pe.flatten(2).permute(0, 2, 1)   # [1,4096,256]# Prepare queriesqueries = point_embedding  # 查询Q:[1,8,256]keys = image_embedding     # 键值K:[1,4096,256]# Apply transformer blocks and final layernormfor layer in self.layers:queries, keys = layer(queries=queries,keys=keys,query_pe=point_embedding,key_pe=image_pe,)  # 经过两个TwoWayAttentionBlock后, queries:[1,8,256], keys:[1,4096,256]# Apply the final attention layer from the points to the imageq = queries + point_embedding  # [1,8,256]k = keys + image_pe  # [1,4096,256]attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)  # [1,8,256]queries = queries + attn_out  # [1,8,256]queries = self.norm_final_attn(queries)  # [1,8,256]return queries, keys

  Attention 结构如下:
  以TwoWayAttentionBlock的第一个Attention模块为例,即:

# embedding_dim = 256, num_heads=8
self.self_attn = Attention(embedding_dim, num_heads) 

  Attention模块主要实现了Transformer中基本的attention机制,若参数downsample_rate不为1,则会先对维度进行下采样映射:

class Attention(nn.Module):def __init__(self,embedding_dim: int,   # 256num_heads: int,   # 8downsample_rate: int = 1,   # 1) -> None:super().__init__()self.embedding_dim = embedding_dim   # 256self.internal_dim = embedding_dim // downsample_rate   # 256self.num_heads = num_heads   # 8assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."self.q_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)self.k_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)self.v_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)self.out_proj = nn.Linear(self.internal_dim, embedding_dim)   # (256,256)def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:b, n, c = x.shapex = x.reshape(b, n, num_heads, c // num_heads)return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_headdef _recombine_heads(self, x: Tensor) -> Tensor:b, n_heads, n_tokens, c_per_head = x.shapex = x.transpose(1, 2)return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x Cdef forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:# Input projections# 输入q:[1,8,256];k:[1,8,256];v:[1,8,256]q = self.q_proj(q)  # [1,8,256]k = self.k_proj(k)  # [1,8,256]v = self.v_proj(v)  # [1,8,256]# Separate into headsq = self._separate_heads(q, self.num_heads)  # [1,8,8,32]k = self._separate_heads(k, self.num_heads)  # [1,8,8,32]v = self._separate_heads(v, self.num_heads)  # [1,8,8,32]_, _, _, c_per_head = q.shape   # 每个head的维度c_per_head=32# attention机制-----------------------------------------------------------------------# 每个head实现q乘k的转置: [1,8,8,32]@[1,8,32,8]->[1,8,8,8]attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokensattn = attn / math.sqrt(c_per_head)  # q @ k(^T) / 根号dattn = torch.softmax(attn, dim=-1)  # [1,8,8,8]# -----------------------------------------------------------------------------------# Get outputout = attn @ v   # softmax( q @ k(^T) / 根号d ) @ v ---> [1,8,8,32]out = self._recombine_heads(out)  # [1,8,256]out = self.out_proj(out)  # [1,8,256]return out

  为避免代码看的太晕,把Attention可视化一下,没错,就是最基本的Multi-head Attention啦~
  
在这里插入图片描述
  
  TwoWayAttentionBlock 结构如下:
  以TwoWayTransformer的第一个TwoWayAttentionBlock模块为例,即:

TwoWayAttentionBlock(embedding_dim=embedding_dim,  # 256num_heads=num_heads,  # 8mlp_dim=mlp_dim,  # 2048activation=activation,  # nn.ReLUattention_downsample_rate=attention_downsample_rate,  # 降采样率=2skip_first_layer_pe=(i == 0),  # 第1个TwoWayAttentionBlock为True)

  TwoWayAttentionBlock模块:

class TwoWayAttentionBlock(nn.Module):def __init__(self,embedding_dim: int,num_heads: int,mlp_dim: int = 2048,activation: Type[nn.Module] = nn.ReLU,attention_downsample_rate: int = 2,skip_first_layer_pe: bool = False,) -> None:super().__init__()self.self_attn = Attention(embedding_dim, num_heads)   # embedding_dim=256, num_heads=8self.norm1 = nn.LayerNorm(embedding_dim)  # 256self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)   # embedding_dim=256, num_heads=8, attention_downsample_rate=2self.norm2 = nn.LayerNorm(embedding_dim)  # 256# embedding_dim=256, mlp_dim=2048, activation=nn.ReLUself.mlp = MLPBlock(embedding_dim, mlp_dim, activation)self.norm3 = nn.LayerNorm(embedding_dim)  # 256self.norm4 = nn.LayerNorm(embedding_dim)  # 256self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)   # embedding_dim=256, num_heads=8, attention_downsample_rate=2self.skip_first_layer_pe = skip_first_layer_pe  # Truedef forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:# 输入queries:[1,8,256], keys:[1,4096,256], query_pe:[1,8,256], key_pe:[1,4096,256]# Self attention blockif self.skip_first_layer_pe:queries = self.self_attn(q=queries, k=queries, v=queries)  # [1,8,256]else:q = queries + query_peattn_out = self.self_attn(q=q, k=q, v=queries)queries = queries + attn_outqueries = self.norm1(queries)  # [1,8,256]# Cross attention block, tokens attending to image embeddingq = queries + query_pe  # [1,8,256]k = keys + key_pe  # [1,4096,256]attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)  # [1,8,256]queries = queries + attn_out  # [1,8,256]queries = self.norm2(queries)  # [1,8,256]# MLP blockmlp_out = self.mlp(queries)   # [1,8,256]queries = queries + mlp_out   # [1,8,256]queries = self.norm3(queries)  # [1,8,256]# Cross attention block, image embedding attending to tokensq = queries + query_pe    # [1,8,256]k = keys + key_pe   # [1,4096,256]attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)  # [1,4096,256]keys = keys + attn_out  # [1,4096,256]keys = self.norm4(keys)  # [1,4096,256]return queries, keys

  可以看到TwoWayTransformer的结构以及token维度变化并不复杂,但其交错的 Q {Q} Q K {K} K V {V} V 确实令人眼花缭乱:
在这里插入图片描述

  TwoWayTransformer中的MLP:

class MLPBlock(nn.Module):def __init__(self,embedding_dim: int,mlp_dim: int,act: Type[nn.Module] = nn.GELU,) -> None:super().__init__()# embedding_dim=256, mlp_dim=2048self.lin1 = nn.Linear(embedding_dim, mlp_dim)  self.lin2 = nn.Linear(mlp_dim, embedding_dim)self.act = act()def forward(self, x: torch.Tensor) -> torch.Tensor:return self.lin2(self.act(self.lin1(x)))

  MLP为简单的线性、激活、线性结构:
在这里插入图片描述


  ② output_upscaling:

Sequential((0): ConvTranspose2d(256, 64, kernel_size=(2, 2), stride=(2, 2))(1): LayerNorm2d()(2): GELU(approximate='none')(3): ConvTranspose2d(64, 32, kernel_size=(2, 2), stride=(2, 2))(4): GELU(approximate='none')
)

  output_upscaling模块由两个反卷积、两个GELU激活和一个LayerNorm组成,实现了特征图的四倍上采样,在 predict_masks函数 中将 [ 1 , 256 , 64 , 64 ] {[1,256,64,64]} [1,256,64,64] 上采样至 [ 1 , 32 , 256 , 256 ] {[1,32,256,256]} [1,32,256,256]

src = src.transpose(1, 2).view(b, c, h, w)   # reshape: [1,4096,256]-> [1,256,64,64]
upscaled_embedding = self.output_upscaling(src) # [1,32,256,256]

  ③ output_hypernetworks_mlps:

ModuleList((0-3): 4 x MLP((layers): ModuleList((0-1): 2 x Linear(in_features=256, out_features=256, bias=True)(2): Linear(in_features=256, out_features=32, bias=True)))
)

  output_hypernetworks_mlps由4个MLP组成,在 predict_masks函数 中将 [ 1 , 256 ] {[1,256]} [1,256] 下采样至 [ 1 , 32 ] {[1,32]} [1,32] 。与TwoWayAttentionBlock中的MLP不同,其结构稍稍多一丢丢:

class MLP(nn.Module):def __init__(self,input_dim: int,   # 256hidden_dim: int,  # 256output_dim: int,  # 32num_layers: int,  # 3sigmoid_output: bool = False,  # False) -> None:super().__init__()self.num_layers = num_layers  # 3h = [hidden_dim] * (num_layers - 1)  # [256,256]self.layers = nn.ModuleList(# [input_dim] + h: [256,256,256], h + [output_dim]:[256,256,32]nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))self.sigmoid_output = sigmoid_outputdef forward(self, x):for i, layer in enumerate(self.layers):# i<2经线性层后relu激活x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)  if self.sigmoid_output:x = F.sigmoid(x)return x

在这里插入图片描述


  ④ iou_prediction_head:

MLP((layers): ModuleList((0-1): 2 x Linear(in_features=256, out_features=256, bias=True)(2): Linear(in_features=256, out_features=4, bias=True))
)

  iou_prediction_head用以实现iou预测,由1个MLP完成,其结构与output_hypernetworks_mlps中的MLP一样,只是最终将 [ 1 , 256 ] {[1,256]} [1,256] 映射至 [ 1 , 4 ] {[1,4]} [1,4]分别代表非multimask预测时的1个mask和multimask预测时的3个mask的iou。


(3)predict_masks函数

位置:【segment_anything/modeling/mask_decoder.py --> MaskDecoder类 --> predict_masks函数】
作用: 利用上述 t r a n s f o r m e r {transformer} transformer o u t p u t _ u p s c a l i n g {output\_upscaling} output_upscaling o u t p u t _ h y p e r n e t w o r k s _ m l p s {output\_hypernetworks\_mlps} output_hypernetworks_mlps i o u _ p r e d i c t i o n _ h e a d {iou\_prediction\_head} iou_prediction_head 四个模块,实现mask和iou预测
  
  此时此刻,首先来重温一下,传入predict_masks函数的参数分别是什么:

  ① image_embeddings:image encoder嵌入,大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]
  ② image_pe:图像嵌入大小对应的位置编码,大小同为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]
  ③ sparse_prompt_embeddings:prompt point和box嵌入,大小为 [ 1 , 3 , 256 ] {[1, 3, 256]} [1,3,256]
  ④ dense_prompt_embeddings:prompt mask嵌入,大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

def predict_masks(self,image_embeddings: torch.Tensor,  # [1, 256, 64, 64]image_pe: torch.Tensor,  # [1, 256, 64, 64]sparse_prompt_embeddings: torch.Tensor,  # [1, 3, 256]dense_prompt_embeddings: torch.Tensor,  # [1, 256, 64, 64]
) -> Tuple[torch.Tensor, torch.Tensor]:"""Predicts masks. See 'forward' for more details."""# Concatenate output tokens# 拼接iou的token和mask的token: [1,256]+[4,256]->[5,256]output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)  # [1,5,256]# iou的token和mask的token + prompt point和box嵌入tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)  # [1,8,256]# Expand per-image data in batch direction to be per-masksrc = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)  # 按batch重复: [1,256,64,64]src = src + dense_prompt_embeddings  # [1,256,64,64]pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)  # 按batch重复: [1,256,64,64]b, c, h, w = src.shape  # 1,256,64,64# Run the transformer# src是image encoder嵌入和prompt mask嵌入# pos_src是图像嵌入大小对应的位置编码# tokens是iou的token和mask的token + prompt point和box嵌入hs, src = self.transformer(src, pos_src, tokens)  # hs:[1,8,256], src:[1,4096,256]iou_token_out = hs[:, 0, :]  # 第1个为iou的token输出[1,256]mask_tokens_out = hs[:, 1: (1 + self.num_mask_tokens), :]  # 随后4个为mask的token输出[4,256]# Upscale mask embeddings and predict masks using the mask tokenssrc = src.transpose(1, 2).view(b, c, h, w)   # reshape: [1,4096,256]-> [1,256,64,64]upscaled_embedding = self.output_upscaling(src)  # [1,32,256,256]hyper_in_list: List[torch.Tensor] = []for i in range(self.num_mask_tokens):hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))hyper_in = torch.stack(hyper_in_list, dim=1)  # [1,4,32]b, c, h, w = upscaled_embedding.shape  # 1,32,256,256masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)  # [1,4,256,256]# Generate mask quality predictionsiou_pred = self.iou_prediction_head(iou_token_out)  # [1,4]return masks, iou_pred

  由此可见,经TwoWayTransformer获得了iou_token_out和mask_tokens_out,iou_token_out由iou_prediction_head(1个MLP)实现iou预测,4个mask_tokens_out分别经过1个MLP所获得的映射拼接后,与经过output_upscaling上采样后的图像嵌入(包含image encoder嵌入和prompt mask嵌入)进行矩阵相乘,得到mask预测。


2. Mask Decoder结构绘制

(1)结构打印

MaskDecoder((transformer): TwoWayTransformer((layers): ModuleList((0-1): 2 x TwoWayAttentionBlock((self_attn): Attention((q_proj): Linear(in_features=256, out_features=256, bias=True)(k_proj): Linear(in_features=256, out_features=256, bias=True)(v_proj): Linear(in_features=256, out_features=256, bias=True)(out_proj): Linear(in_features=256, out_features=256, bias=True))(norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)(cross_attn_token_to_image): Attention((q_proj): Linear(in_features=256, out_features=128, bias=True)(k_proj): Linear(in_features=256, out_features=128, bias=True)(v_proj): Linear(in_features=256, out_features=128, bias=True)(out_proj): Linear(in_features=128, out_features=256, bias=True))(norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)(mlp): MLPBlock((lin1): Linear(in_features=256, out_features=2048, bias=True)(lin2): Linear(in_features=2048, out_features=256, bias=True)(act): ReLU())(norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)(norm4): LayerNorm((256,), eps=1e-05, elementwise_affine=True)(cross_attn_image_to_token): Attention((q_proj): Linear(in_features=256, out_features=128, bias=True)(k_proj): Linear(in_features=256, out_features=128, bias=True)(v_proj): Linear(in_features=256, out_features=128, bias=True)(out_proj): Linear(in_features=128, out_features=256, bias=True))))(final_attn_token_to_image): Attention((q_proj): Linear(in_features=256, out_features=128, bias=True)(k_proj): Linear(in_features=256, out_features=128, bias=True)(v_proj): Linear(in_features=256, out_features=128, bias=True)(out_proj): Linear(in_features=128, out_features=256, bias=True))(norm_final_attn): LayerNorm((256,), eps=1e-05, elementwise_affine=True))(iou_token): Embedding(1, 256)(mask_tokens): Embedding(4, 256)(output_upscaling): Sequential((0): ConvTranspose2d(256, 64, kernel_size=(2, 2), stride=(2, 2))(1): LayerNorm2d()(2): GELU(approximate='none')(3): ConvTranspose2d(64, 32, kernel_size=(2, 2), stride=(2, 2))(4): GELU(approximate='none'))(output_hypernetworks_mlps): ModuleList((0-3): 4 x MLP((layers): ModuleList((0-1): 2 x Linear(in_features=256, out_features=256, bias=True)(2): Linear(in_features=256, out_features=32, bias=True))))(iou_prediction_head): MLP((layers): ModuleList((0-1): 2 x Linear(in_features=256, out_features=256, bias=True)(2): Linear(in_features=256, out_features=4, bias=True)))
)

(2)结构绘制

  整体结构就是这样的啦,完结,撒花~
  
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/191514.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

谷歌投资Character.AI,展现AI领域的战略布局和创新能力

谷歌&#xff08;Google&#xff09;作为全球最大的互联网公司之一&#xff0c;一直在人工智能&#xff08;AI&#xff09;领域发挥着引领和推动的作用。近日&#xff0c;据消息人士透露&#xff0c;谷歌正与人工智能初创公司 Character.AI 进行投资谈判&#xff0c;计划投资数…

腾讯云服务器新用户优惠有哪些?腾讯云服务器新人优惠整理汇总

你们是否曾经幻想过拥有一台属于自己的服务器&#xff0c;却因为价格而望而却步呢&#xff1f;今天&#xff0c;我要告诉你一个好消息——腾讯云服务器现在针对新用户推出了一系列的优惠政策&#xff0c;让你可以用超低的价格购买到性能强大的服务器&#xff01; 首先&#xf…

基于深度学习的单帧图像超分辨率重建综述

论文标题&#xff1a;基于深度学习的单帧图像超分辨率重建综述作者&#xff1a; 吴 靖&#xff0c;叶晓晶&#xff0c;黄 峰&#xff0c;陈丽琼&#xff0c;王志锋&#xff0c;刘文犀发表日期&#xff1a;2022 年9 月阅读日期 &#xff1a;2023.11.18研究背景&#xff1a; 图像…

如何在el-tree懒加载并且包含下级的情况下进行数据回显-01

在项目中做需求&#xff0c;遇到一个比较棘手的问题&#xff0c;el-tree懒加载在包含下级的时候&#xff0c;需要做回显&#xff0c;将选中的数据再次勾选上&#xff0c;在处理这个需求的时候有两点是比较困难的&#xff1a; el-tree是懒加载的&#xff0c;包含下级需要一层一…

腾讯云服务器怎么买便宜?腾讯云服务器新人专享限时特惠购买链接

腾讯云作为国内领先的云计算服务提供商之一&#xff0c;为个人用户和企业用户提供了多种优惠活动。这些活动不仅能帮助用户节省成本&#xff0c;还能提升企业的效益。本文将介绍腾讯云的多重优惠活动&#xff0c;让用户能够以更优惠的价格购买和续费云服务器。 腾讯云双十一领…

目标检测—YOLO系列(二 ) 全面解读复现YOLOv1 PyTorch

精读论文 前言 从这篇开始&#xff0c;我们将进入YOLO的学习。YOLO是目前比较流行的目标检测算法&#xff0c;速度快且结构简单&#xff0c;其他的目标检测算法如RCNN系列&#xff0c;以后有时间的话再介绍。 本文主要介绍的是YOLOV1&#xff0c;这是由以Joseph Redmon为首的…

ROS基础—关于参数服务器的操作

1、rosparam list 获取参数服务器的所有参数。 2、rosparam get /run_id 获取参数的值

计算机网络学习笔记(六):应用层(待更新)

目录​​​​​​​ 6.2 文件传送协议FTP(File Transfer Protocol) 6.2.1 FTP概述 6.2.2 FTP的基本工作原理 6.5 电子邮件&#xff1a;SMTP、POP3、IMAP 6.5.1 电子邮件概述 6.5.2 发邮件&#xff1a;简单邮件传送协议SMTP 6.5.3 电子邮件的信息格式、地址格式 6.5.4 收…

Flink1.17 DataStream API

目录 一.执行环境&#xff08;Execution Environment&#xff09; 1.1 创建执行环境 1.2 执行模式 1.3 触发程序执行 二.源算子&#xff08;Source&#xff09; 2.1 从集合中读取数据 2.2 从文件读取数据 2.3 从 RabbitMQ 中读取数据 2.4 从数据生成器读取数据 2.5 …

动手学深度学习——循环神经网络的简洁实现(代码详解)

文章目录 循环神经网络的简洁实现1. 定义模型2. 训练与预测 循环神经网络的简洁实现 # 使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型 import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2lbatch_size, …

SARAS-Net: Scale and Relation Aware Siamese Network for Change Detection

SARAS-Net&#xff1a;用于变化检测的尺度和关系感知的孪生网络 AAAI Chao-Peng Chen, Jun-Wei Hsieh, Ping-Yang Chen, Yi-Kuan Hsieh, Bor-Shiun Wang 2023 摘要&#xff1a;变化检测(CD)旨在找出不同时间两幅图像之间的差异&#xff0c;并输出变化图来表示该区域是否发生了…

【Proteus仿真】【51单片机】防火防盗GSM智能家居设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器&#xff0c;使用声光报警模块、LCD1602显示模块、DS18B20温度、烟雾传感器模块、按键模块、PCF8591 ADC模块、红外检测模块等。 主要功能&#xff1a; 系统运行后…