OpenAI的多函数调用(Multiple Function Calling)简介

  我在六月份写了一篇关于GPT 函数调用(Function calling) 的博客https://blog.csdn.net/xindoo/article/details/131262670,其中介绍了函数调用的方法,但之前的函数调用,在一轮对话中只能调用一个函数。就在上周,OpenAI在开发者大会上,升级了函数调用的功能,在新的gpt-3.5和gpt-4模型中,可以在单次对话中调用多个函数了,而且在python SDK中也提供了并发函数调用相关的接口,无疑这将大幅减少大语言模型和现实世界之间交互的开发复杂度,接下来就让我用一个具体的示例,带你了解下OpenAI的新特性。
在这里插入图片描述
  这里假设我需要利用gpt实现一个百度、谷歌、必应三个搜索引擎搜索结果汇总的功能。我现在有以下的几个搜索函数(我们假装已经实现了从分别从百度、谷歌、必应获取搜索结果的逻辑)。

def search_baidu(keyword):"""从百度搜索引擎中搜索关键词"""return f"{keyword}是一个技术博主"def search_google(keyword):"""从谷歌搜索引擎中搜索关键词"""return f"{keyword}是一个后端工程师"def search_bing(keyword):"""从必应搜索引擎中搜索关键词"""return f"{keyword}是一个Python爱好者"

  接下来我们需要将这三个搜索函数按照openai给定的格式用json字符串描述出来,具体可以参考官方文档,我这里直接给出上面三个函数的json描述。

tools = [{"type": "function","function": {"name": "search_baidu","description": "从百度搜索引擎中搜索关键词","parameters": {"type": "object","properties": {"keyword": {"type": "string","description": "搜索关键词",}},"required": ["keyword"],},}},    {"type": "function","function": {"name": "search_google","description": "从google搜索引擎中搜索关键词","parameters": {"type": "object","properties": {"keyword": {"type": "string","description": "搜索关键词",}},"required": ["keyword"],},}},        {"type": "function","function": {"name": "search_bing","description": "从bing搜索引擎中搜索关键词","parameters": {"type": "object","properties": {"keyword": {"type": "string","description": "搜索关键词",}},"required": ["keyword"],},}}
]
available_functions = { "search_baidu": search_baidu, "search_google": search_google, "search_bing": search_bing } 

  上面这个的目的是将所有函数的作用和使用方法(入参)描述给gpt,让gpt知道如何去调用。available_functions是为了保存函数名和函数的映射关系,方便我们后续通过函数名去调用函数。

  接下来我们实现一个函数,其功能就是给定一个关键词(keyword),返回百度、谷歌、必应三个搜索引擎搜索结果的汇总,这要在之前的函数调用方式下,你必须通过多轮对话获取到所有需要调用的函数,然后将结果汇总后在发给gpt。而在支持了多函数调用后,仅需要一轮对话就可以完成所有的功能,完整的代码如下:

from openai import OpenAI
import json
client = OpenAI(base_url='https://thales.xindoo.xyz/openai/v1/')def search(keyword):messages = [{"role": "user", "content": f"汇总下百度、谷歌、必应三个搜索引擎关于'{keyword}'的结果"}]# 发起首次请求,告诉gpt要做什么,已经有哪些函数可以调动 response = client.chat.completions.create(model="gpt-3.5-turbo-1106",messages=messages,tools=tools,tool_choice="auto", )response_message = response.choices[0].messagetool_calls = response_message.tool_calls# 检查是否需要调用函数if tool_calls:# 解析所有需要调用的函数及参数messages.append(response_message)  # 注意这里要将openai的回复也拼接到消息列表里# 将所有函数调用的结果拼接到消息列表里for tool_call in tool_calls:function_name = tool_call.function.namefunction_to_call = available_functions[function_name]function_args = json.loads(tool_call.function.arguments)function_response = function_to_call(**function_args)messages.append({"tool_call_id": tool_call.id,"role": "tool","name": function_name,"content": function_response,}) second_response = client.chat.completions.create(model="gpt-3.5-turbo-1106",messages=messages,)  return second_response.choices[0].message.contentprint(search("xindoo"))

  输出的结果是根据百度、谷歌和必应三个搜索引擎的结果,'xindoo'可能是一个技术博主、后端工程师以及Python爱好者。

这里需要提醒以下两点:

  1. 目前只有gpt-4-1106-preview和gpt-3.5-turbo-1106两个模式支持单词对话同时调用多个模型的,其他模型均不支持。
  2. openAI改变了api中传递function的参数,废弃了 functions和 function_call,改用了tools和tool_choice两个新参数,我猜测是为了未来增加更多的工具支持。

  这里额外说下,上面的三个函数调用是串行调用,如果每个函数都比较耗时的话,会增加整体的调用时长,而在最新的assistant api中增加了并行执行函数的api,这个我们放到下篇文章中讲解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/192107.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高校教师资格证备考

高等教育制度 关于人的全面发展和个体发展的关系,说法正确的是(ABC)。 A.个体发展是在全面发展基础上的选择性发展 B.全面发展是个体发展的前提和基础 C.个体发展又是全面发展的动力 D.个体发展是全面发展的前提和基础

计算机毕业设计 基于SpringBoot的车辆网位置信息管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…

kafka入门(一):kafka消息消费

安装kafka,创建 topic: Windows安装kafka, 详情见:https://blog.csdn.net/sinat_32502451/article/details/133067851 Linux 安装kafka,详情见:https://blog.csdn.net/sinat_32502451/article/details/133080353 添…

[acwing周赛复盘] 第 94 场周赛20230311

[acwing周赛复盘] 第 94 场周赛20231118 总结5295. 三元组1. 题目描述2. 思路分析3. 代码实现 5296. 边的定向1. 题目描述2. 思路分析3. 代码实现 六、参考链接 总结 好久没做acw了,挺难的。T1 模拟T2 前缀和以及优化。T3 贪心 5295. 三元组 链接: 5295. 三元组…

Java Web——JavaScript基础

1. 引入方式 JavaScript程序不能独立运行,它需要被嵌入HTML中,然后浏览器才能执行 JavaScript 代码。 通过 script 标签将 JavaScript 代码引入到 HTML 中,有3种方式: 1.1. 内嵌式(嵌入式) 直接写在html文件里,用s…

Redis新操作

1.Bitmaps 1.1概述 Bitmaps可以对位进行操作,实际上它就是一个字符串,可以将Bitmaps想象为一个以位为单位的数组,数组中的每个元素只能存储0或者1,数组的下标在Bitmaps被称为偏移量。 setbit key offset value:设置o…

【C语言】数组下标为啥从0开始?下标越界访问一定报错吗?

本篇文章目录 0. 相关文章1. 下标从0开始问题2. 数组下标越界不报错问题 0. 相关文章 指针与指针变量数组名不是首元素地址的的2个例外拨开指针和数组名之间的迷雾 1. 下标从0开始问题 原因是:数组下标访问本质是“指针解引用操作”,而指针又是地址&am…

彩色年终工作总结汇报PPT模板下载

这是一套彩色年终工作总结汇报PPT模板,共27页; PPT模板封面,使用了红黄蓝色块、网格背景。中间填写年终工作总结汇报PPT标题。界面为简约商务风格。 PowerPoint模板内容页,由25张彩色动态幻灯片图表,搭配PPT文字排版…

gRPC 的原理 介绍带你从头了解gRPC

gRPC 的原理 什么是gRPC gRPC的官方介绍是:gRPC是一个现代的、高性能、开源的和语言无关的通用 RPC 框架,基于 HTTP2 协议设计,序列化使用PB(Protocol Buffer),PB 是一种语言无关的高性能序列化框架,基于 HTTP2PB 保…

如何零基础自学AI人工智能

随着人工智能(AI)的快速发展,越来越多的有志之士被其强大的潜力所吸引,希望投身其中。然而,对于许多零基础的人来说,如何入门AI成了一个难题。本文将为你提供一份详尽的自学AI人工智能的攻略,帮…

Vue3-shallowRef 和 shallowReactive函数(浅层次的响应式)

Vue3-shallowRef 和 shallowReactive函数(浅层次的响应式) shallowRef函数 功能:只给基本数据类型添加响应式。如果是对象,则不会支持响应式,层成也不会创建Proxy对象。ref和shallowRef在基本数据类型上是没有区别的…

Linux下查看pytorch运行时真正调用的cuda版本

一般情况我们会安装使用多个cuda版本。而且pytorch在安装时也会自动安装一个对应的版本。 正确查看方式: 想要查看 Pytorch 实际使用的运行时的 cuda 目录,可以直接输出 cpp_extension.py 中的 CUDA_HOME 变量。 import torch import torch.utils imp…