Spring Cloud学习(九)【Elasticsearch 分布式搜索引擎01】

文章目录

  • 初识 elasticsearch
    • 了解 ES
    • 倒排索引
    • ES 的一些概念
    • 安装es、kibana
      • 安装elasticsearch
      • 部署kibana
    • 分词器
      • 安装IK分词器
      • ik分词器-拓展词库
  • 索引库操作
    • mapping 映射属性
    • 索引库的 CRUD
  • 文档操作
    • 添加文档
    • 查看、删除文档
    • 修改文档
    • Dynamic Mapping
  • RestClient 操作索引库
    • 什么是RestClient
    • 创建索引库
    • 删除索引库
    • 判断索引库是否存在
  • RestClient操作文档
    • 新增文档
    • 查询文档
    • 修改文档
    • 删除文档
    • 批量导入文档


初识 elasticsearch

了解 ES

Elasticsearch 是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。

在这里插入图片描述

elasticsearch 结合 kibana、Logstash、Beats,也就是 elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域。

在这里插入图片描述

elasticsearch 是 elastic stack 的核心,负责存储、搜索、分析数据

在这里插入图片描述

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/ 。

Lucene的优势:

  • 易扩展
  • 高性能(基于倒排索引)

Lucene的缺点:

  • 只限于Java语言开发
  • 学习曲线陡峭
  • 不支持水平扩展

2004年Shay Banon基于Lucene开发了Compass
2010年Shay Banon 重写了Compass,取名为Elasticsearch。
官网地址: https://www.elastic.co/cn/

目前最新的版本是:7.12.1
相比与lucene,elasticsearch具备下列优势:

  • 支持分布式,可水平扩展
  • 提供Restful接口,可被任何语言调用

搜索引擎技术排名:

  1. Elasticsearch:开源的分布式搜索引擎
  2. Splunk:商业项目
  3. Solr:Apache的开源搜索引擎

什么是 elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是 elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

什么是 Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

倒排索引

传统数据库(如MySQL)采用正向索引,例如给下表(tb_goods)中的id创建索引:

在这里插入图片描述

正向索引和倒排索引

elasticsearch采用倒排索引:

  • 文档(document):每条数据就是一个文档
  • 词条(term):文档按照语义分成的词语

在这里插入图片描述

posting list

倒排索引中包含两部分内容:

  • 词条词典(Term Dictionary):记录所有词条,以及词条与倒排列表(Posting List)之间的关系,会给词条创建索引,提高查询和插入效率
  • 倒排列表(Posting List):记录词条所在的文档id、词条出现频率 、词条在文档中的位置等信息
    • 文档id:用于快速获取文档
    • 词条频率(TF):文档在词条出现的次数,用于评分

在这里插入图片描述

什么是文档和词条?

  • 每一条数据就是一个文档
  • 对文档中的内容分词,得到的词语就是词条

什么是正向索引?

  • 基于文档id创建索引。查询词条时必须先找到文档,而后判断是否包含词条

什么是倒排索引?

  • 对文档内容分词,对词条创建索引,并记录词条所在文档的信息。查询时先根据词条查询到文档id,而后获取到文档

ES 的一些概念

文档

elasticsearch是面向文档存储的,可以是数据库中的一条商品数据,一个订单信息。
文档数据会被序列化为json格式后存储在elasticsearch中。

在这里插入图片描述

索引(index):相同类型的文档的集合
映射(mapping):索引中文档的字段约束信息,类似表的结构约束

在这里插入图片描述

概念对比

在这里插入图片描述

架构

Mysql:擅长事务类型操作,可以确保数据的安全和一致性
Elasticsearch:擅长海量数据的搜索、分析、计算

在这里插入图片描述

文档:一条数据就是一个文档,es中是Json格式
字段:Json文档中的字段
索引:同类型文档的集合
映射:索引中文档的约束,比如字段名称、类型
elasticsearch与数据库的关系:

  • 数据库负责事务类型操作
  • elasticsearch 负责海量数据的搜索、分析、计算

安装es、kibana

安装elasticsearch

部署单点es

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net

加载镜像

通过 docker pull 命令拉取

elasticsearch

docker pull elasticsearch:7.16.2

arm linux

docker pull arm64v8/elasticsearch:7.16.2

kibana

docker pull kibana:7.16.2

运行

运行docker命令,部署单点es:

docker run -d \--name es \-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \-e "discovery.type=single-node" \-v es-data:/usr/share/elasticsearch/data \-v es-plugins:/usr/share/elasticsearch/plugins \--privileged \--network es-net \-p 9200:9200 \-p 9300:9300 \
elasticsearch:7.16.2

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

在浏览器中输入:http://10.211.55.6:9200 即可看到elasticsearch的响应结果:

在这里插入图片描述

部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

  1. 部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.16.2
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

在这里插入图片描述

此时,在浏览器输入地址访问:http://10.211.55.6:5601,即可看到结果

在这里插入图片描述

  1. DevTools

kibana 中提供了一个DevTools界面:

在这里插入图片描述

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

分词器

es在创建倒排索引时需要对文档分词;在搜索时,需要对用户输入内容分词。但默认的分词规则对中文处理并不友好。
我们在kibana的DevTools中测试:

POST /_analyze
{"text": "java学习中,勿扰?程序员", "analyzer": "standard"
}

语法说明:

  • POST:请求方式
  • /_analyze:请求路径,这里省略了http://10.211.55.6/:9200,有kibana帮我们补充
  • 请求参数,json风格:
    • analyzer:分词器类型,这里是默认的standard分词器
    • text:要分词的内容

安装IK分词器

处理中文分词,一般会使用IK分词器。https://github.com/medcl/elasticsearch-analysis-ik

在线安装ik插件

# 进入容器内部
docker exec -it elasticsearch /bin/bash# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip#退出
exit
#重启容器
docker restart elasticsearch

离线安装ik插件

1)查看数据卷目录

安装插件需要知道 elasticsearch 的 plugins 目录位置,而我们用了数据卷挂载,因此需要查看 elasticsearch 的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[{"CreatedAt": "2023-11-17T15:52:19+08:00","Driver": "local","Labels": null,"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data","Name": "es-plugins","Options": null,"Scope": "local"}
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

2)解压缩分词器安装包

把ik分词器解压缩,重命名为ik

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

4)重启容器

# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es

5)测试

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

POST /_analyze
{"text": "java学习中,勿扰?程序员", "analyzer": "ik_max_word"
}

结果

{"tokens" : [{"token" : "java","start_offset" : 0,"end_offset" : 4,"type" : "ENGLISH","position" : 0},{"token" : "学习","start_offset" : 4,"end_offset" : 6,"type" : "CN_WORD","position" : 1},{"token" : "中","start_offset" : 6,"end_offset" : 7,"type" : "CN_CHAR","position" : 2},{"token" : "勿扰","start_offset" : 8,"end_offset" : 10,"type" : "CN_WORD","position" : 3},{"token" : "程序员","start_offset" : 11,"end_offset" : 14,"type" : "CN_WORD","position" : 4},{"token" : "程序","start_offset" : 11,"end_offset" : 13,"type" : "CN_WORD","position" : 5},{"token" : "员","start_offset" : 13,"end_offset" : 14,"type" : "CN_CHAR","position" : 6}]
}

ik分词器-拓展词库

要拓展ik分词器的词库,只需要修改一个ik分词器目录中的 config 目录中的IkAnalyzer.cfg.xml 文件:

在这里插入图片描述

然后在名为 ext.dic 的文件中,添加想要拓展的词语即可:

在这里插入图片描述

要禁用某些敏感词条,只需要修改一个ik分词器 目录中的 config 目录中的IkAnalyzer.cfg.xml 文件:

在这里插入图片描述

然后在名为 stopword.dic 的文件中,添加想要拓展的词语即可:

在这里插入图片描述

分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

索引库操作

mapping 映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

在这里插入图片描述

mapping常见属性有哪些?

  • type:数据类型
  • index:是否索引
  • analyzer:分词器
  • properties:子字段

type常见的有哪些?

  • 字符串:text、keyword
  • 数字:long、integer、short、byte、double、float
  • 布尔:boolean
  • 日期:date
  • 对象:object

索引库的 CRUD

ES中通过Restful请求操作索引库、文档。请求内容用DSL语句来表示。创建索引库和mapping的DSL语法如下:

在这里插入图片描述

# 创建索引库
PUT /wxx
{"mappings": {"properties": {"info": {"type": "text","analyzer": "ik_smart"},"email": {"type": "keyword","index": false},"name": {"type": "object","properties": {"firstName": {"type": "keyword"},"lastName": {"type": "keyword"}}}}}
}

在这里插入图片描述

查看索引库语法:

GET /索引库名 

示例:

GET /wxx

删除索引库的语法:

DELETE /索引库名 

示例:

DELETE /wxx

修改索引库

索引库和mapping一旦创建无法修改,但是可以添加新的字段,语法如下:

PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}

示例:

PUT /wxx/_mapping
{"properties": {"age":{"type": "integer"}}
}

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

文档操作

添加文档

新增文档的 DSL 语法如下:

在这里插入图片描述

查看、删除文档

查看文档语法:

GET /索引库名/_doc/文档id 

示例:

GET /wxx/_doc/文档id 

删除索引库的语法:

DELETE /索引库名/_doc/文档id 

示例:

DELETE /wxx/_doc/文档id 

修改文档

方式一:全量修改,会删除旧文档,添加新文档

在这里插入图片描述

方式二:增量修改,修改指定字段值

在这里插入图片描述

文档操作有哪些?

  • 创建文档:POST /索引库名/_doc/文档id { json文档 }
  • 查询文档:GET /索引库名/_doc/文档id
  • 删除文档:DELETE /索引库名/_doc/文档id
  • 修改文档:
    • 全量修改:PUT /索引库名/_doc/文档id { json文档 }
    • 增量修改:POST /索引库名/_update/文档id { “doc”: {字段}}

Dynamic Mapping

当我们向ES中插入文档时,如果文档中字段没有对应的mapping,ES会帮助我们字段设置mapping,规则如下:
在这里插入图片描述

我们插入一条新的数据,其中包含4个没有mapping的字段:

在这里插入图片描述

  • 插入文档时,es会检查文档中的字段是否有mapping,如果没有则按照默认mapping规则来创建索引。
  • 如果默认mapping规则不符合你的需求,一定要自己设置字段mapping

RestClient 操作索引库

什么是RestClient

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

在这里插入图片描述

利用JavaRestClient实现创建、删除索引库,判断索引库是否存在

根据课前资料提供的酒店数据创建索引库,索引库名为hotel,mapping属性根据数据库结构定义。
基本步骤如下:

  1. 导入课前资料Demo
  2. 分析数据结构,定义mapping属性
  3. 初始化JavaRestClient
  4. 利用JavaRestClient创建索引库
  5. 利用JavaRestClient删除索引库
  6. 利用JavaRestClient判断索引库是否存在
DROP TABLE IF EXISTS `tb_hotel`;
CREATE TABLE `tb_hotel`  (`id` bigint(20) NOT NULL COMMENT '酒店id',`name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '酒店名称',`address` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '酒店地址',`price` int(10) NOT NULL COMMENT '酒店价格',`score` int(2) NOT NULL COMMENT '酒店评分',`brand` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '酒店品牌',`city` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '所在城市',`star_name` varchar(16) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '酒店星级,1星到5星,1钻到5钻',`business` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '商圈',`latitude` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '纬度',`longitude` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '经度',`pic` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '酒店图片',PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Compact;

步骤1:导入课前资料Demo

首先导入课前资料提供的数据库数据:

在这里插入图片描述

然后导入课前资料提供的项目:

在这里插入图片描述

步骤2:分析数据结构

mapping要考虑的问题:
字段名、数据类型、是否参与搜索、是否分词、如果分词,分词器是什么?

ES中支持两种地理坐标数据类型:

  • geo_point:由纬度(latitude)和经度(longitude)确定的一个点。例如:“32.8752345, 120.2981576”
  • geo_shape:有多个geo_point组成的复杂几何图形。例如一条直线,“LINESTRING (-77.03653 38.897676, -77.009051 38.889939)”

字段拷贝可以使用copy_to属性将当前字段拷贝到指定字段。示例:

在这里插入图片描述

步骤3:初始化JavaRestClient

  1. 引入es的RestHighLevelClient依赖:
<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>
  1. 因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:
<properties><java.version>1.8</java.version><elasticsearch.version>7.16.2</elasticsearch.version>
</properties>
  1. 初始化RestHighLevelClient:
this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://10.211.55.6:9200")
));

创建索引库

步骤4:创建索引库

在这里插入图片描述

@Test
void testCreateHotelIndex() throws IOException {// 1. 创建Request对象CreateIndexRequest request = new CreateIndexRequest("hotel");// 2. 准备请求参数:DSL语句request.source(HotelConstants.MAPPING_TEMPLATE, XContentType.JSON);// 3. 发送请求client.indices().create(request, RequestOptions.DEFAULT);
}
# 酒店的mapping
PUT /hotel
{"mappings": {"properties": {"all": {"type": "text","analyzer": "ik_max_word"},"id": {"type": "keyword"},"name": {"type": "text","analyzer": "ik_max_word","copy_to": "all"},"address": {"type": "keyword","index": false},"price": {"type": "integer"},"score": {"type": "integer"},"brand": {"type": "keyword","copy_to": "all"},"city": {"type": "keyword"},"starName": {"type": "keyword"},"business": {"type": "keyword","copy_to": "all"},"location": {"type": "geo_point"},"pic": {"type": "keyword","index": false}}}
}

删除索引库

步骤5:删除索引库、判断索引库是否存在

删除索引库代码如下:

在这里插入图片描述

判断索引库是否存在

判断索引库是否存在

在这里插入图片描述

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

RestClient操作文档

利用JavaRestClient实现文档的CRUD

去数据库查询酒店数据,导入到hotel索引库,实现酒店数据的CRUD。
基本步骤如下:

  1. 初始化JavaRestClient
  2. 利用JavaRestClient新增酒店数据
  3. 利用JavaRestClient根据id查询酒店数据
  4. 利用JavaRestClient删除酒店数据
  5. 利用JavaRestClient修改酒店数据

新增文档

步骤1:初始化JavaRestClient

新建一个测试类,实现文档相关操作,并且完成JavaRestClient的初始化

在这里插入图片描述

步骤2:添加酒店数据到索引库

先查询酒店数据,然后给这条数据创建倒排索引,即可完成添加:

在这里插入图片描述

@SpringBootTest
public class HotelDocumentTest {@Autowiredprivate IHotelService hotelService;private RestHighLevelClient client;@Testvoid testInit(){System.out.println(client);}@Testvoid testAddDocument() throws IOException {// 根据 id 查询酒店数据Hotel hotel = hotelService.getById(38665L);// 转换为文档类型HotelDoc hotelDoc = new HotelDoc(hotel);// 1. 准备Request对象IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());// 2. 准备Json文档request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);// 3. 发送请求client.index(request, RequestOptions.DEFAULT);}@BeforeEachvoid setUp(){this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://10.211.55.6:9200")));}@AfterEachvoid tearDown() throws IOException {this.client.close();}
}

在这里插入图片描述

运行后查看是否添加成功

在这里插入图片描述

查询文档

步骤3:根据id查询酒店数据

根据id查询到的文档数据是json,需要反序列化为java对象:

在这里插入图片描述

修改文档

步骤4:根据id修改酒店数据

修改文档数据有两种方式:
方式一:全量更新。再次写入id一样的文档,就会删除旧文档,添加新文档
方式二:局部更新。只更新部分字段,我们演示方式二

在这里插入图片描述

删除文档

步骤5:根据id删除文档数据

删除文档代码如下:

在这里插入图片描述

文档操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxRequest。XXX是Index、Get、Update、Delete
  • 准备参数(Index和Update时需要)
  • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete
  • 解析结果(Get时需要)

批量导入文档

利用JavaRestClient批量导入酒店数据到ES

需求:批量查询酒店数据,然后批量导入索引库中
思路:

  1. 利用mybatis-plus查询酒店数据
  2. 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
  3. 利用JavaRestClient中的Bulk批处理,实现批量新增文档,示例代码如下

在这里插入图片描述

@Testvoid testBulkRequest() throws IOException {// 批量查询酒店数据List<Hotel> hotels = hotelService.list();// 1. 创建 RequestBulkRequest request = new BulkRequest();// 2. 准备参数,添加多个新增的Requestfor (Hotel hotel : hotels) {// 转换为文档类型 HotelDocHotelDoc hotelDoc = new HotelDoc(hotel);// 创建新增文档的Request对象request.add(new IndexRequest("hotel").id(hotelDoc.getId().toString()).source(JSON.toJSONString(hotelDoc), XContentType.JSON));}// 3. 发送请求client.bulk(request, RequestOptions.DEFAULT);}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/192474.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

后端老项目迁移方法

老项目迁移方法 需求&#xff1a; 因某个模块MySQL表结构、表关系 错乱复杂&#xff0c;而且其他模块的代码也在操作这个模块的数据库 耦合严重 导致Web工程代码紊乱、不易理解、性能低下&#xff0c; 故在 系统由A JavaWeb工程迁移至B工程 时&#xff0c;重构MySQL表结构、表…

计算机毕业设计选题推荐-个人健康微信小程序/安卓APP-项目实战

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

2023年【陕西省安全员B证】考试报名及陕西省安全员B证模拟试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2023年陕西省安全员B证考试报名为正在备考陕西省安全员B证操作证的学员准备的理论考试专题&#xff0c;每个月更新的陕西省安全员B证模拟试题祝您顺利通过陕西省安全员B证考试。 1、【多选题】《陕西省建设工程质量和…

【C++】容器string的构造函数和迭代器

目录 1 什么是string 2 迭代器 2.1 迭代器的使用 2.2 auto关键字以及代码可读性 3 构造函数 string - C Reference 1 什么是string 上图是C官网对于string的解释&#xff1a;string是表示字符序列的对象。 string本质是一个类&#xff0c;位于std的命名空间下&#xff0…

Android File Transfer(安卓文件传输工具)

Android File Transfer 是一款安卓文件传输工&#xff0c;它允许在Mac操作系统和Android设备之间进行文件传输。 该软件通过USB连接将文件从Mac电脑传输到连接的Android设备&#xff0c;或者反过来从Android设备传输文件到Mac电脑。这包括照片、视频、音乐、文档和其他文件类型…

从iddata函数生成的结构体数据中获取时间序列、输入序列和输出序列

从iddata函数生成的结构体数据中获取时间序列、输入序列和输出序列 在使用iddata函数生成结构体数据后&#xff0c;有时需要单独使用其中的时间序列&#xff0c;输入序列和输出序列&#xff0c;此时需要对iddata生成的数据进行分析&#xff0c;以获得所需数据。本文说明读取时…

特征缩放和转换以及自定义Transformers(Machine Learning 研习之九)

特征缩放和转换 您需要应用于数据的最重要的转换之一是功能扩展。除了少数例外&#xff0c;机器学习算法在输入数值属性具有非常不同的尺度时表现不佳。住房数据就是这种情况:房间总数约为6至39320间&#xff0c;而收入中位数仅为0至15间。如果没有任何缩放&#xff0c;大多数…

CAD长方形纤维插件2D

插件介绍 CAD长方形纤维插件2D版本可用于在AutoCAD软件内生成随机分布的长方形纤维图形&#xff0c;生成的dwg格式模型可用于模拟二维随机分布的纤维复合材料、随机初始裂缝等&#xff0c;同时模型可导入COMSOL、Abaqus、ANSYS、Fluent等有限元软件内进行仿真分析计算。 插件…

关于ASO优化的分步入门指南1

欢迎阅读我们的应用商店优化&#xff08;ASO&#xff09;分步指南&#xff0c;接下来我们将引导大家完成ASO研究的初始步骤&#xff0c;为提高应用程序的知名度和吸引自然下载奠定基础。 1、确定竞争对手。 首先确定应用程序的直接和间接竞争对手。我们可以通过咨询客户或进行…

掌握深度学习利器——TensorFlow 2.x实战应用与进阶

掌握深度学习利器——TensorFlow 2.x实战应用与进阶 摘要&#xff1a;随着人工智能技术的飞速发展&#xff0c;深度学习已成为当下最热门的领域之一。作为深度学习领域的重要工具&#xff0c;TensorFlow 2.x 备受关注。本文将通过介绍TensorFlow 2.x的基本概念和特性&#xff…

Spring Cloud -熔断器Hystrix

为什么需要服务降级或熔断 微服务架构与传统架构的一个显著区别就是服务变多了&#xff0c;任何一个服务调用失败、或者服务不可用&#xff0c;都会对整个应用造成影响。比如前段时间阿里云整体业务不可用&#xff0c;有多方猜测就是阿里云的某一个关键服务不可用导致的。 服…

python_面向对象中的特殊成员

一、几个常见的特殊成员 # 都只是语法&#xff0c;无特殊意义 class Foo(object):def __init__(self,a1,a2):self.a1 a1self.a2 a2def __call__(self,*args,**kwargs):print(11111,args,kwargs)return 123def __getitem__(self, item):print(item)return 8def __setitem__(s…