YOLOv8改进 | EIoU、SIoU、WIoU、DIoU、FoucsIOU等二十余种损失函数

一、本文介绍

这篇文章介绍了YOLOv8的重大改进,特别是在损失函数方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如SIoU、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的目标检测挑战进行优化。文章会详细探讨这些损失函数如何提高YOLOv8在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性。本文章主要是为了发最近新出的Inner思想改进的各种EIoU的文章服务,其中我经过实验在绝大多数下的效果都要比本文中提到的各种损失效果要好。 

InnerIoU: YOLOv8改进 | 2023 | InnerIoU、InnerSIoU、InnerWIoU、Foucs等损失函数

专栏回顾: YOLOv8改进有效涨点专栏->持续复现各种最新机制

本位代码地址: 文末提供完整代码块-包括EIoU、CIoU、DIoU等七种损失和其Focus变种

目录

一、本文介绍

二、各种损失函数的基本原理 

2.1 交集面积和并集面积

2.2 IoU

2.3 SIoU

2.4 WioU

2.5 GIoU

2.6 DIoU

2.7 EIoU

2.8 CIoU

2.9 FocusLoss 

三、EIoU、SIoU、EIoU、FocusIoU等损失函数代码块

3.1 代码一

3.2 代码二 

四、添加EIoU、SIoU、EIoU、FocusIoU等损失函数到模型中

五、总结


 二、各种损失函数的基本原理 

2.1 交集面积和并集面积

在理解各种损失函数之前我们需要先来理解一下交集面积和并集面积,在数学中我们都学习过集合的概念,这里的交集和并集的概念和数学集合中的含义是一样的。

2.2 IoU

论文地址:IoU Loss for 2D/3D Object Detectio

适用场景:普通的IoU并没有特定的适用场景

概念: 测量预测边界框和真实边界框之间的重叠度(最基本的边界框损失函数,后面的都是居于其进行计算)。

2.3 SIoU

论文地址:SIoU: More Powerful Learning for Bounding Box Regression

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。

概念: SIoU损失通过融入角度考虑和规模敏感性,引入了一种更为复杂的边界框回归方法,解决了以往损失函数的局限性,SIoU损失函数包含四个组成部分:角度损失、距离损失、形状损失和第四个未指定的组成部分。通过整合这些方面,从而实现更好的训练速度和预测准确性。

2.4 WioU

论文地址WIoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

适用场景:适用于需要动态调整损失焦点的情况,如不均匀分布的目标或不同尺度的目标检测。

概念:引入动态聚焦机制的IoU变体,旨在改善边界框回归损失。

2.5 GIoU

论文地址:GIoU: A Metric and A Loss for Bounding Box Regression

适用场景:适合处理有重叠和非重叠区域的复杂场景,如拥挤场景的目标检测。

概念: 在IoU的基础上考虑非重叠区域,以更全面评估边界框

2.6 DIoU

论文地址:DIoU: Faster and Better Learning for Bounding Box Regression

适用场景:适用于需要快速收敛和精确定位的任务,特别是在边界框定位精度至关重要的场景。

概念:结合边界框中心点之间的距离和重叠区域。

2.7 EIoU

论文地址:EIoU:Loss for Accurate Bounding Box Regression

适用场景:可用于需要进一步优化边界框对齐和形状相似性的高级场景。

概念:EIoU损失函数的核心思想在于提高边界框回归的准确性和效率。它通过以下几个方面来优化目标检测:

1. 增加中心点距离损失:通过最小化预测框和真实框中心点之间的距离,提高边界框的定位准确性。

2. 考虑尺寸差异:通过惩罚宽度和高度的差异,EIoU确保预测框在形状上更接近真实框。

3. 结合最小封闭框尺寸:将损失函数与包含预测框和真实框的最小封闭框的尺寸相结合,从而使得损失更加敏感于对象的尺寸和位置。

EIoU损失函数在传统IoU基础上增加了这些考量,以期在各种尺度上都能获得更精确的目标定位,尤其是在物体大小和形状变化较大的场景中。

2.8 CIoU

论文地址:CIoU:Enhancing Geometric Factors in Model Learning

适用场景:适合需要综合考虑重叠区域、形状和中心点位置的场景,如复杂背景或多目标跟踪。

概念:综合考虑重叠区域、中心点距离和长宽比。

2.9 FocusLoss 

论文地址:Focal Loss for Dense Object Detection

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。 

Focal Loss由Kaiming He等人在论文《Focal Loss for Dense Object Detection》中提出,旨在解决在训练过程中正负样本数量极度不平衡的问题,尤其是在一些目标检测任务中,背景类别的样本可能远远多于前景类别的样本。

Focal Loss通过修改交叉熵损失,增加一个调整因子这个因子降低了那些已经被正确分类的样本的损失值,使得模型的训练焦点更多地放在难以分类的样本上。这种方式特别有利于提升小目标或者在复杂背景中容易被忽视的目标的检测性能。简而言之,Focal Loss让模型“关注”(或“专注”)于学习那些对提高整体性能更为关键的样本。

三、EIoU、SIoU、EIoU、FocusIoU等损失函数代码块

3.1 代码一

此代码块块的基础版本来源于Github的开源版本,我在其基础上将Inner的思想加入其中形成了各种Inner的思想同时融合各种改良版本的损失函数形成对应版本的InnerIoU、InnerCIoU等损失函数。

import numpy as np
import torch, mathclass WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter/(union + eps), alpha) # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2)) # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

3.2 代码二 

代码块二此处是使用Focus时候需要修改的代码,如果不适用则不需要修改下面的代码,因为利用Focus机制时候返回的类型是元组所以需要额外的处理。 

        if type(iou) is tuple:if len(iou) == 2:# Focus Loss 时返回的是元组类型,进行额外处理loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sumelse:loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sumelse:# 正常的损失函数loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

四、添加EIoU、SIoU、EIoU、FocusIoU等损失函数到模型中

添加的方法和基础版本的各种损失函数的方法是一样的,网上的教程已经满天飞了,考虑到大家有的人已经会了有的人还不会,所以这里提供我的另一篇博客里面包括YOLOv8改进C2f、Conv、Neck、损失函数、Bottleneck、检测头等各种YOLOv8能够改进的地方的详细过程讲解(里面会教会你如何使用上面的代码块一和代码块二)。所以如果你已经会了可以直接跳过此处,如果你还不会我建议你可以看下面的文章我相信能够帮助到你。

修改教程: YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

五、总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

本专栏其它内容(持续更新) 

YOLOv8改进 | DAttention (DAT)注意力机制实现极限涨点

YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

YOLOv8改进 | ODConv附修改后的C2f、Bottleneck模块代码

YOLOv8改进有效涨点系列->手把手教你添加动态蛇形卷积(Dynamic Snake Convolution)

YOLOv8性能评估指标->mAP、Precision、Recall、FPS、IoU

YOLOv8改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)

 YOLOv8改进有效涨点系列->多位置替换可变形卷积(DCNv1、DCNv2、DCNv3) 

详解YOLOv8网络结构/环境搭建/数据集获取/训练/推理/验证/导出/部署

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/194785.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kubenetes-服务发现和负载均衡

一、服务发布 kubenetes把服务发布至集群内部或者外部,服务的三种不同类型: ClusterlPNodePortLoadBalancer ClusterIP是发布至集群内部的一个虚拟IP,通过负载均衡技术转发到不同的pod中。 NodePort解决的是集群外部访问的问题,用户可能不…

Python编程基础(持续更新)

Python编程基础 文章目录 第一章 环境配置一、Python环境配置1、Python环境下载2、Python指定版本环境下载3、Python环境安装(1)选择`Install Now`(立即安装)(2)选择`Customize installation`(自定义安装)4、Python环境验证5、pip配置`清华源`二、Visual Studio Code(…

基于ssm的房屋租售网站(有报告)。Javaee项目,ssm项目。

演示视频: 基于ssm的房屋租售网站(有报告)。Javaee项目,ssm项目。 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 项目介绍: 采用M(mode…

数睿通2.0数据接入、数据开发、系统权限、集群监控全面升级

引言 数睿通 2.0 数据中台迎来了11月份的更新,感谢大家的支持,本次更新主要包括以下内容: 数据库支持 MongoDB数据接入支持 MongoDB,支持自定义 SQL 采集,支持停止运行中的任务数据生产支持 FlinkJar 任务&#xff0…

【Spring】之初识

未来的几周时间,大概率我会更新一下Spring家族的一些简单知识。而什么是Spring家族,好多同学还不是很清楚,我先来简单介绍一下吧: 所谓Spring家族,它其实就是一个框架,是基于Servlet再次进行封装的内容。为…

数据结构与算法之美学习笔记:21 | 哈希算法(上):如何防止数据库中的用户信息被脱库?

目录 前言什么是哈希算法?应用一:安全加密应用二:唯一标识应用三:数据校验散列函数解答开篇内容小节 前言 本节课程思维导图 如果你是 一名工程师,你会如何存储用户密码这么重要的数据吗?仅仅 MD5 加密一下…

域名的理解

域名的分类 见下图 这里引用的阿里云对域名的定义,个人理解是有两种叫法,一种是传统的叫法,也就是将sample.org.cn划分成了三级域名,还有一种叫法是基于用户注册的域名来说的,将用户注册的整体域名称作一级域名&…

【FPGA】Verilog:实现 RS 触发器 | Flip-Flop | 使用 NOR 的 RS 触发器 | 使用 NAND 的 RS 触发器

目录 0x00 RS 触发器(RS Flip-Flop) 0x01 实现 RS 触发器 0x02 使用 NOR 的 RS 触发器 0x03 使用 NAND 的 RS 触发器 0x00 RS 触发器(RS Flip-Flop) 触发器(Flip-Flop)是一种带有时钟的二进制存储设备…

FastJson竟然会导致内存泄露?你遇到过吗?

FastJson是一款性能优异的java序列化和反序列框架,广泛应用于日常开发工作中,也许正是因为作者在设计这款框架时,比较注重性能方面的考量,在框架安全性,空间占用等方面做了一些牺牲。 很不幸小编前两天就遇到了一个使…

RHCSA --- Linux存储管理

存储管理 Boot:可引导操作系统的分区(必须是主分区) 分区 ll /dev/nvme0n* 表示的是 nvme接口的磁盘 0n1 1 0n2 2 0n3 3 brw-rw----. 1 root disk 259, 0 Nov 15 19:31 /dev/nvme0n1 磁盘1 brw-rw----. 1 ro…

《洛谷深入浅出基础篇》P5266 学籍管理——map的应用

上链接:P5266 【深基17.例6】学籍管理 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P5266#submit 题干: 题目描述 您要设计一个学籍管理系统,最开始学籍数据是空的,然后该系统能够支持下面的…

存储过程与触发器

一、存储过程 1.1 概念 把需要重复执行的内容放在存储过程中,实现代码的复用。 create procedure 创建存储过程的关键字 my_proc1:存储过程的名字。 执行下例代码就是创建了一个存储过程 执行存储过程,就是把上图的插入语句重复执行,现…