R语言:利用biomod2进行生态位建模

  在这里主要是分享一个不错的代码,喜欢的可以慢慢研究。我看了一遍,觉得里面有很多有意思的东西,供大家学习和参考。

在这里插入图片描述

  利用PCA轴总结的70个环境变量,利用biomod2进行生态位建模:

#----------------------------------------------------------#
#           NICHE MODELLING WITH BIOMOD2 USING       #######
#    70 ENVIRONMENTAL VARIABLES (10-km RESOLUTION)  ####### 
#                SUMMARIZED IN PCA AXES            #######
#-------------------------------------------------------## Contact: Pedro V. Eisenlohr (pedro.eisenlohr@unemat.br)#------------------------------------------------- Acknowledgments ------------------------------------------------------------####
### Dr. Guarino Colli's team of Universidade de Brasília. #########################################################################
### Dr. Diogo Souza Bezerra Rocha (Instituto de Pesquisas Jardim Botânico/RJ). ####################################################
### Drª Marinez Ferreira de Siqueira (Instituto de Pesquisas Jardim Botânico/RJ). #################################################
### My students of Ecology Lab, mainly J.C. Pires-de-Oliveira. ####################################################################
#----------------------------------------- ---------------------------------------------------------------------------------------##------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
### Environmental data source (70 variables):### Temperature and precipitation (19 variables): CHELSA (http://chelsa-climate.org/).#Bio1 = Annual Mean Temperature#Bio2 = Mean Diurnal Range#Bio3 = Isothermality#Bio4 = Temperature Seasonality#Bio5 = Max Temperature of Warmest Month#Bio6 = Min Temperature of Coldest Month#Bio7 = Temperature Annual Range#Bio8 = Mean Temperature of Wettest Quarter#Bio9 = Mean Temperature of Driest Quarter#Bio10 = Mean Temperature of Warmest Quarter#Bio11 = Mean Temperature of Coldest Quarter#Bio12 = Annual Precipitation#Bio13 = Precipitation of Wettest Month#Bio14 = Precipitation of Driest Month#Bio15 = Precipitation Seasonality#Bio16 = Precipitation of Wettest Quarter#Bio17 = Precipitation of Driest Quarter#Bio18 = Precipitation of Warmest Quarter#Bio19 = Precipitation of Coldest Quarter### Solar radiation (3 variables), water vapor pressure (3 variables) and wind speed (3 variables): WorldClim 2.0 (http://worldclim.org/version2).#Solar Radiation: Maximum, Minimum and Mean #Water Vapor Pressure: Maximum, Minimum and Mean#Wind Speed: Maximum, Minimum and Mean### Cloud Cover (3 variables): CRU-TS v3.10.01 Historic Climate Database for GIS (http://www.cgiar-csi.org/data/uea-cru-ts-v3-10-01-historic-climate-database).#Cloud Cover: Maximum, Minimum and Mean### Enhanced Vegetation Index (3 variables): http://www.earthenv.org/.#Coefficient of variation of EVI = Normalized dispersion of EVI#Range of EVI#Standard deviation of EVI### Forest Coverage (1 variable): http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/.#Forest land, calibrated to FRA2000 land statistics### Grassland/Scrub/Woodland Coverage (1 variable): http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/.### Water Bodies Coverage (1 variable): http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/.### Elevation (1 variable): CGIAR-CSI (2006): NASA Shuttle Radar Topographic Mission (SRTM) (http://srtm.csi.cgiar.org/).### Slope (1 variable) and Aspect (1 variable): obtained from Elevation.#Topographic variables obtained by applying 'terrain' function of 'raster' package.### Topographic Wetness Index (1 variable): ENVIREM - ENVIronmental Rasters for Ecological Modeling (http://envirem.github.io/#varTable).### Global Relief Model (1 variable): UNEP - http://geodata.grid.unep.ch/results.php#Global Relief Model of Earth's surface that integrates land topography and ocean bathymetry.### Terrain Roughness Index (1 variable): ENVIREM - ENVIronmental Rasters for Ecological Modeling (http://envirem.github.io/#varTable).### Potential Evapotranspiration - PET (6 variables) and Aridity Index (1 variable): Global Aridity and PET Database (http://www.cgiar-csi.org/data/global-aridity-and-pet-database) 
# and ENVIREM - ENVIronmental Rasters for Ecological Modeling (http://envirem.github.io/#varTable).#Annual Potential Evapotranspiration.#Mean Monthly PET of Coldest Quarter.#Mean Monthly PET of Driest Quarter.#PET Seasonality: monthly variability in potential evapotranspiration.#Mean Monthly PET of Warmest Quarter.#Mean Monthly PET of Wettest quarter#Global Annual Aridity Index.### AET (1 variable) and Soil Water Stress (3 variables): Global High-Resolution Soil-Water Balance (http://www.cgiar-csi.org/data/global-high-resolution-soil-water-balance#download).#Mean Annual Actual Evapotranspiration.#Soil Water Stress: Maximum, Minimum and Mean.### Relative Humidity (6 variables): Climond (https://www.climond.org/RawClimateData.aspx).#Relative Humidity at 9 am: Maximum, Minimum and Mean.#Relative Humidity at 3 pm: Maximum, Minimum and Mean.### Soil Variables (10 variables): Soil grids (https://soilgrids.org)#BulkDensity = Bulk density (fine earth) in kg/cubic–meter#Clay = Clay content (0–2 micro meter) mass fraction in %#Coarse = Coarse fragments volumetric in %#Sand = Sand content (50–2000 micro meter) mass fraction in %#Silt = Silt content (2–50 micro meter) mass fraction in %#BDRLOG = Predicted probability of occurrence (0–100%) of R horizon#BDRICM = Depth to bedrock (R horizon) up to 200 cm#CARBON = Soil organic carbon content (fine earth fraction) in g per kg#pH_H20 = Soil pH x 10 in H2O#CEC = Cation exchange capacity of soil in cmolc/kg
#------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------##----------------------------#
## SET WORKING DIRECTORY ####
#--------------------------## Each user should adjust this!
setwd(choose.dir()) 
getwd()
list.files() # Among the listed files, there must be one called # "Environmental layers" and another called "Shapefiles".#---------------------------------------------#
## INSTALL AND LOAD THE REQUIRED PACKAGES ####
#-------------------------------------------##install.packages("biomod2", dep=T)
#install.packages("colorRamps", dep=T)
#install.packages("dismo", dep=T)
#install.packages("dplyr", dep=T)
#install.packages("maps", dep=T)
#install.packages("maptools", dep=T)
#install.packages("plotKML", dep=T)
#install.packages("raster", dep=T)
#install.packages("rgdal", dep=T)
#install.packages("RStoolbox", dep=T)
#install.packages("foreach", dep=T)
#install.packages("doParallel", dep=T)library(biomod2)
library(colorRamps)
library(dismo)
library(dplyr)
library(maps)
library(maptools)
library(plotKML)
library(raster)
library(rgdal)
library(RStoolbox)
library(foreach)
library(doParallel)
library(virtualspecies)
library(filesstrings)# Creating output folder #if (dir.exists("outputs") == F) {dir.create("outputs")
}# Parallel processing ## cores <- detectCores()/2 # Assigning 50% of the cores for modeling
#getDoParWorkers()
#cl <- parallel::makeCluster(cores, outfile =paste0("./outputs/", "Log.log"))
#registerDoParallel(cl)
#getDoParWorkers()#--------------------------------------------------------------------------------------------#
### IF YOU HAVE ALREADY DOWNLOADED AND TREATED ALL LAYERS, YOU SHOULD SKIP THE STEPS BELOW ####
#------------------------------------------------------------------------------------------##---------------------------------------------------------------------#
# Loading CHELSA layers (Temperature and Precipitation - 1979-2013) ####
#---------------------------------------------------------------------## First, load a 10-km resolution mask to resample:
#bio.wc <- list.files("./Environmental layers/WorldClim 2.0", full.names=TRUE)
#bio.wc <- stack(bio.wc)
#bio.wc
#res(bio.wc)# Crop mask layers
#neotrop <- readOGR("./Shapefiles/ShapeNeo/neotropic.shp")
#bio.wc <- mask(crop(bio.wc,neotrop),neotrop)
#bio.wc
#res(bio.wc)# Resampling CHELSA layers
#bioclim <- list.files("./Environmental layers/CHELSA", full.names=TRUE, pattern=".grd")
#bioclim <- stack(bioclim)
#bioclim <- mask(crop(bioclim,neotrop),neotrop)
#names(bioclim)
#res(bioclim)
#bioclim <-resample(bioclim, bio.wc)
#res(bioclim)
#plot(bioclim[[1]])
#names(bioclim)#bio1<-(bioclim[[1]])
#writeRaster(bio1, "bio01")#bio10<-(bioclim[[2]])
#writeRaster(bio10,"bio10")#bio11<-(bioclim[[3]])
#writeRaster(bio11,"bio11")#bio12<-(bioclim[[4]])
#writeRaster(bio12,"bio12")#bio13<-(bioclim[[5]])
#writeRaster(bio13,"bio13")#bio14<-(bioclim[[6]])
#writeRaster(bio14,"bio14")#bio15<-(bioclim[[7]])
#writeRaster(bio15,"bio15")#bio16<-(bioclim[[8]])
#writeRaster(bio16,"bio16")#bio17<-(bioclim[[9]])
#writeRaster(bio17,"bio17")#bio18<-(bioclim[[10]])
#writeRaster(bio18,"bio18")#bio19<-(bioclim[[11]])
#writeRaster(bio19,"bio19")#bio2<-(bioclim[[12]])
#writeRaster(bio2,"bio2")#bio3<-(bioclim[[13]])
#writeRaster(bio3,"bio3")#bio4<-(bioclim[[14]])
#writeRaster(bio4,"bio4")#bio5<-(bioclim[[15]])
#writeRaster(bio5,"bio5")#bio6<-(bioclim[[16]])
#writeRaster(bio6,"bio6")#bio7<-(bioclim[[17]])
#writeRaster(bio7,"bio7")#bio8<-(bioclim[[18]])
#writeRaster(bio8,"bio8")#bio9<-(bioclim[[19]])
#writeRaster(bio9,"bio9")#----------------------------------------#
#----------------------------------------#
### Compiling other rasters to stack ####
#--------------------------------------##Solar Radiation:
#solar.radiation <- list.files("./Environmental layers/Solar Radiation", pattern=".tif", full.names=TRUE)
#solar.radiation <- stack(solar.radiation)
#solar.radiation.mean <- mean(solar.radiation)
#solar.radiation.max <- max(solar.radiation)
#solar.radiation.min <- min(solar.radiation)
#solar.radiation.mean <- mask(crop(solar.radiation.mean, neotrop),neotrop)
#writeRaster(solar.radiation.mean,"SolarRadiationMean")
#solar.radiation.max <- mask(crop(solar.radiation.max, neotrop),neotrop)
#writeRaster(solar.radiation.max,"SolarRadiationMax")
#solar.radiation.min <- mask(crop(solar.radiation.min, neotrop),neotrop)
#writeRaster(solar.radiation.min,"SolarRadiationMin")
#res(solar.radiation.mean)
#plot(solar.radiation.mean)
#res(solar.radiation.max)
#plot(solar.radiation.max)
#res(solar.radiation.min)
#plot(solar.radiation.min)#Water Vapor Pressure:
#water.vapor.pressure <- list.files("./Environmental layers/Water Vapor Pressure", pattern=".tif", full.names=TRUE)
#water.vapor.pressure <-stack(water.vapor.pressure)
#water.vapor.pressure.mean <-mean(water.vapor.pressure)
#water.vapor.pressure.max <-max(water.vapor.pressure)
#water.vapor.pressure.min <-min(water.vapor.pressure)
#water.vapor.pressure.mean <- mask(crop(water.vapor.pressure.mean, neotrop),neotrop)
#writeRaster(water.vapor.pressure.mean,"WaterVaporPressureMean")
#water.vapor.pressure.max <- mask(crop(water.vapor.pressure.max, neotrop),neotrop)
#writeRaster(water.vapor.pressure.max,"WaterVaporPressureMax")
#water.vapor.pressure.min <- mask(crop(water.vapor.pressure.min, neotrop),neotrop)
#writeRaster(water.vapor.pressure.min,"WaterVaporPressureMin")
#res(water.vapor.pressure.mean)
#plot(water.vapor.pressure.mean)
#res(water.vapor.pressure.max)
#plot(water.vapor.pressure.max)
#res(water.vapor.pressure.min)
#plot(water.vapor.pressure.min)#Wind Speed:
#wind.speed <- list.files("./Environmental layers/Wind Speed", pattern=".tif", full.names=TRUE)
#wind.speed <- stack(wind.speed)
#wind.speed.mean <-mean(wind.speed)
#wind.speed.max <-max(wind.speed)
#wind.speed.min <-min(wind.speed)
#wind.speed.mean <-mask(crop(wind.speed.mean, neotrop),neotrop)
#writeRaster(wind.speed.mean, "WindSpeedMean")
#wind.speed.max <-mask(crop(wind.speed.max, neotrop),neotrop)
#writeRaster(wind.speed.max, "WindSpeedMax")
#wind.speed.min <-mask(crop(wind.speed.min, neotrop),neotrop)
#writeRaster(wind.speed.min, "WindSpeedMin")
#res(wind.speed.mean)
#plot(wind.speed.mean)
#res(wind.speed.max)
#plot(wind.speed.max)
#res(wind.speed.min)
#plot(wind.speed.min)#Cloud Cover:
#cloud.cover<-list.files("./Environmental layers/Cloud Cover",pattern=".asc", full.names=TRUE)
#cloud.cover<-stack(cloud.cover)
#cloud.cover.mean<-mean(cloud.cover)
#cloud.cover.max<-max(cloud.cover)
#cloud.cover.min<-min(cloud.cover)
#cloud.cover.mean<-mask(crop(cloud.cover.mean, neotrop),neotrop)
#cloud.cover.mean<-resample(cloud.cover.mean,bioclim)
#writeRaster(cloud.cover.mean,"CloudCoverMean")
#cloud.cover.max<-mask(crop(cloud.cover.max, neotrop),neotrop)
#cloud.cover.max<-resample(cloud.cover.max,bioclim)
#writeRaster(cloud.cover.max,"CloudCoverMax")
#cloud.cover.min<-mask(crop(cloud.cover.min, neotrop),neotrop)
#cloud.cover.min<-resample(cloud.cover.min,bioclim)
#writeRaster(cloud.cover.min,"CloudCoverMin")
#res(cloud.cover.mean)
#plot(cloud.cover.mean)
#res(cloud.cover.max)
#plot(cloud.cover.max)
#res(cloud.cover.min)
#plot(cloud.cover.min)#Enhanced Vegetation Index - Coeficient of Variation:
#EVI.cv <- list.files("./Environmental layers/Enhanced Vegetation Index_cv",pattern=".tif", full.names=TRUE)
#EVI.cv <- stack(EVI.cv)
#EVI.cv <- mask(crop(EVI.cv,neotrop),neotrop)
#EVI.cv.10km <- resample(EVI.cv,bioclim)
#writeRaster(EVI.cv.10km, "EVIcv10km")
#res(EVI.cv.10km)
#plot(EVI.cv.10km)#Enhanced Vegetation Index - Range:
#EVI.rng <- list.files("./Environmental layers/Enhanced Vegetation Index_range",pattern=".tif", full.names=TRUE)
#EVI.rng <- stack(EVI.rng)
#EVI.rng <- mask(crop(EVI.rng,neotrop),neotrop)
#EVI.rng.10km <- resample(EVI.rng,bioclim)
#writeRaster(EVI.rng.10km, "EVIrng10km")
#res(EVI.rng.10km)
#plot(EVI.rng.10km)#Enhanced Vegetation Index - Standard Deviation:
#EVI.std <- list.files("./Environmental layers/Enhanced Vegetation Index_std",pattern=".tif", full.names=TRUE)
#EVI.std <- stack(EVI.std)
#EVI.std <- mask(crop(EVI.std,neotrop),neotrop)
#EVI.std.10km <- resample(EVI.std,bioclim)
#writeRaster(EVI.std.10km, "EVIstd10km")
#res(EVI.std.10km)
#plot(EVI.std.10km)#Forest Coverage:
#FOR.cov <- list.files("./Environmental layers/Vegetation coverage/Forest Coverage",pattern=".asc", full.names=TRUE)
#FOR.cov <- stack(FOR.cov)
#FOR.cov <- mask(crop(FOR.cov,neotrop),neotrop)
#writeRaster(FOR.cov, "FORcov")
#res(FOR.cov)
#plot(FOR.cov)#Grassland/Scrub/Woodland Coverage:
#GRASS.cov <- list.files("./Environmental layers/Vegetation coverage/Grassland Coverage",pattern=".asc", full.names=TRUE)
#GRASS.cov <- stack(GRASS.cov)
#GRASS.cov <- mask(crop(GRASS.cov,neotrop),neotrop)
#writeRaster(GRASS.cov, "GRASScov")
#res(GRASS.cov)
#plot(GRASS.cov)#Water Bodies:
#WATB.cov <- list.files("./Environmental layers/Vegetation coverage/Water Bodies",pattern=".asc", full.names=TRUE)
#WATB.cov <- stack(WATB.cov)
#WATB.cov <- mask(crop(WATB.cov,neotrop),neotrop)
#writeRaster(WATB.cov, "WATBcov")
#res(WATB.cov)
#plot(WATB.cov)#Elevation:
#elevation <-list.files("./Environmental layers/Elevation",pattern=".asc", full.names=TRUE)
#elevation <-stack(elevation)
#elevation <-mask(crop(elevation, neotrop),neotrop)
#elevation.10km <-resample(elevation,bioclim)
#writeRaster(elevation.10km,"Elevation10km")
#res(elevation.10km)
#plot(elevation.10km)# Global Relief Model:
#relief <- list.files("./Environmental layers/Global Relief Model", pattern="tif", full.names=TRUE)
#relief <- stack(relief)
#relief <- mask(crop(relief,neotrop),neotrop)
#relief.10km <- resample(relief, bioclim)
#writeRaster(relief.10km, "relief10km")
#res(relief.10km)
#plot(relief.10km)#Slope and Aspect:
#slope <- terrain(elevation.10km, opt="slope")
#writeRaster(slope,"Slope")
#res(slope)
#plot(slope)#aspect <- terrain(elevation.10km, opt="aspect")
#writeRaster(aspect,"Aspect")
#res(aspect)
#plot(aspect)#Terrain Roughness Index:
#roughness <-list.files("./Environmental layers/Terrain Roughness Index",pattern=".tif", full.names=TRUE)
#roughness <- stack(roughness)
#roughness <-mask(crop(roughness, neotrop),neotrop)
#roughness.10km <-resample(roughness,bioclim)
#writeRaster(roughness.10km,"Roughness10km")
#res(roughness.10km)
#plot(roughness.10km)#Topographic Wetness Index:
#topowet <-list.files("./Environmental layers/Topographic Wetness Index",pattern=".tif", full.names=TRUE)
#topowet <- stack(topowet)
#topowet <-mask(crop(topowet, neotrop),neotrop)
#topowet.10km <-resample(topowet,bioclim)
#writeRaster(topowet.10km,"TopoWet10km")
#res(topowet.10km)
#plot(topowet.10km)#Potential Evapotranspiration - PET:
### Annual PET:
#PET.1km <- raster("./Environmental layers/Potential Evapotranspiration/Global PET - Annual/PET_he_annual/pet_he_yr/w001001.adf")
#PET.1km <- mask(crop(PET.1km,neotrop),neotrop)
#PET.10km <- resample(PET.1km,bioclim)
#writeRaster(PET.10km, "PET10km")
#res(PET.10km)
#plot(PET.10km)### PET Coldest Quarter:
#PET.cq <- list.files("./Environmental layers/Potential Evapotranspiration/PET Coldest Quarter",pattern=".tif", full.names=TRUE)
#PET.cq <- stack(PET.cq)
#PET.cq <-mask(crop(PET.cq, neotrop),neotrop)
#PET.cq <-resample(PET.cq,bioclim)
#writeRaster(PET.cq,"PETcq")
#res(PET.cq)
#plot(PET.cq)### PET Driest Quarter:
#PET.dq <- list.files("./Environmental layers/Potential Evapotranspiration/PET Driest Quarter",pattern=".tif", full.names=TRUE)
#PET.dq <- stack(PET.dq)
#PET.dq <-mask(crop(PET.dq, neotrop),neotrop)
#PET.dq <-resample(PET.dq,bioclim)
#writeRaster(PET.dq,"PETdq")
#res(PET.dq)
#plot(PET.dq)### PET Warmest Quarter:
#PET.wq <- list.files("./Environmental layers/Potential Evapotranspiration/PET Warmest Quarter",pattern=".tif", full.names=TRUE)
#PET.wq <- stack(PET.wq)
#PET.wq <- mask(crop(PET.wq, neotrop),neotrop)
#PET.wq <- resample(PET.wq,bioclim)
#writeRaster(PET.wq,"PETwq")
#res(PET.wq)
#plot(PET.wq)### PET Wettest Quarter:
#PET.wetq <- list.files("./Environmental layers/Potential Evapotranspiration/PET Wettest Quarter",pattern=".tif", full.names=TRUE)
#PET.wetq <- stack(PET.wetq)
#PET.wetq <- mask(crop(PET.wetq, neotrop),neotrop)
#PET.wetq <- resample(PET.wetq,bioclim)
#writeRaster(PET.wetq,"PETwetq")
#res(PET.wetq)
#plot(PET.wetq)### PET Seasonality:
#PET.seas <- list.files("./Environmental layers/Potential Evapotranspiration/PET Seasonality",pattern=".tif", full.names=TRUE)
#PET.seas <- stack(PET.seas)
#PET.seas <- mask(crop(PET.seas, neotrop),neotrop)
#PET.seas <- resample(PET.seas,bioclim)
#writeRaster(PET.seas,"PETseas")
#res(PET.seas)
#plot(PET.seas)#Aridity Index:
#Aridity.1km <- raster("./Environmental layers/Global Aridity and PET database/Global Aridity - Annual/AI_annual/ai_yr/w001001.adf")
#Aridity.1km <- mask(crop(Aridity.1km,neotrop),neotrop)
#Aridity.10km <- resample(Aridity.1km,bioclim)
#writeRaster(Aridity.10km, "Aridity10km")
#res(Aridity.10km)
#plot(Aridity.10km)#Actual Evapotranspiration:
#AET.1km <- raster("./Environmental layers/Global Soil Water Balance and AET/Mean Annual AET/AET_YR/aet_yr/w001001.adf")
#AET.1km <- mask(crop(AET.1km,neotrop),neotrop)
#AET.10km <- resample(AET.1km,bioclim)
#writeRaster(AET.10km, "AET10km")
#res(AET.10km)
#plot(AET.10km)#Soil Water Stress:
#SWS.jan <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_1/w001001.adf")
#SWS.feb <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_2/w001001.adf")
#SWS.mar <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_3/w001001.adf")
#SWS.apr <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_4/w001001.adf")
#SWS.may <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_5/w001001.adf")
#SWS.jun <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_6/w001001.adf")
#SWS.jul <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_7/w001001.adf")
#SWS.aug <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_8/w001001.adf")
#SWS.sep <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_9/w001001.adf")
#SWS.oct <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_10/w001001.adf")
#SWS.nov <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_11/w001001.adf")
#SWS.dec <-raster("./Environmental layers/Global Soil Water Balance and AET/Monthly Soil Water Stress/swc_fr/swc_fr_12/w001001.adf")
#SWS.stack <-stack(SWS.jan,SWS.feb,SWS.mar,SWS.apr,SWS.may,SWS.jun,SWS.jul,
#				SWS.aug,SWS.sep,SWS.oct,SWS.nov,SWS.dec)#SWS.mean.1km <-mean(SWS.stack)
#SWS.mean.1km <-mask(crop(SWS.mean.1km,neotrop),neotrop)
#SWS.mean.10km <-resample(SWS.mean.1km, bioclim)
#writeRaster(SWS.mean.10km,"SWSmean10km")
#res(SWS.mean.10km)
#plot(SWS.mean.10km)#SWS.max.1km <-max(SWS.stack)
#SWS.max.1km <-mask(crop(SWS.max.1km,neotrop),neotrop)
#SWS.max.10km <-resample(SWS.max.1km, bioclim)
#writeRaster(SWS.max.10km,"SWSmax10km")
#res(SWS.max.10km)
#plot(SWS.max.10km)#SWS.min.1km <-min(SWS.stack)
#SWS.min.1km <-mask(crop(SWS.min.1km,neotrop),neotrop)
#SWS.min.10km <-resample(SWS.min.1km, bioclim)
#writeRaster(SWS.min.10km,"SWSmin10km")
#res(SWS.min.10km)
#plot(SWS.min.10km)#Relative Humidity at 3pm:
#Humidity.3pm.jan <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm01/w001001.adf")
#Humidity.3pm.feb <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm02/w001001.adf")
#Humidity.3pm.mar <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm03/w001001.adf")
#Humidity.3pm.apr <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm04/w001001.adf")
#Humidity.3pm.may <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm05/w001001.adf")
#Humidity.3pm.jun <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm06/w001001.adf")
#Humidity.3pm.jul <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm07/w001001.adf")
#Humidity.3pm.aug <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm08/w001001.adf")
#Humidity.3pm.sep <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm09/w001001.adf")
#Humidity.3pm.oct <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm10/w001001.adf")
#Humidity.3pm.nov <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm11/w001001.adf")
#Humidity.3pm.dec <-raster("./Environmental layers/Relative Humidity at 3 pm/CM10_1975H_Raw_ESRI_RHpm_V1.2/CM10_1975H_Raw_ESRI_RHpm_V1.2/rhpm12/w001001.adf")
#Humidity.3pm.stack <-stack(Humidity.3pm.jan, Humidity.3pm.feb, Humidity.3pm.mar, Humidity.3pm.apr, Humidity.3pm.may, Humidity.3pm.jun, Humidity.3pm.jul, 
#				Humidity.3pm.aug, Humidity.3pm.sep, Humidity.3pm.oct, Humidity.3pm.nov, Humidity.3pm.dec)#Humidity.3pm.mean.20km <-mean(Humidity.3pm.stack)
#Humidity.3pm.mean.20km <-mask(crop(Humidity.3pm.mean.20km,neotrop),neotrop)
#Humidity.3pm.mean.10km <-resample(Humidity.3pm.mean.20km, bioclim)
#writeRaster(Humidity.3pm.mean.10km,"Humidity3pmMean10km")
#res(Humidity.3pm.mean.10km)
#plot(Humidity.3pm.mean.10km)#Humidity.3pm.max.20km <-max(Humidity.3pm.stack)
#Humidity.3pm.max.20km <-mask(crop(Humidity.3pm.max.20km,neotrop),neotrop)
#Humidity.3pm.max.10km <-resample(Humidity.3pm.max.20km, bioclim)
#writeRaster(Humidity.3pm.max.10km,"Humidity3pmMax10km")
#res(Humidity.3pm.max.10km)
#plot(Humidity.3pm.max.10km)#Humidity.3pm.min.20km <-min(Humidity.3pm.stack)
#Humidity.3pm.min.20km <-mask(crop(Humidity.3pm.min.20km,neotrop),neotrop)
#Humidity.3pm.min.10km <-resample(Humidity.3pm.min.20km, bioclim)
#writeRaster(Humidity.3pm.min.10km,"Humidity3pmMin10km")
#res(Humidity.3pm.min.10km)
#plot(Humidity.3pm.min.10km)#Relative Humidity at 9am:
#Humidity.9am.jan <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham01/w001001.adf")
#Humidity.9am.feb <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham02/w001001.adf")
#Humidity.9am.mar <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham03/w001001.adf")
#Humidity.9am.apr <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham04/w001001.adf")
#Humidity.9am.may <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham05/w001001.adf")
#Humidity.9am.jun <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham06/w001001.adf")
#Humidity.9am.jul <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham07/w001001.adf")
#Humidity.9am.aug <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham08/w001001.adf")
#Humidity.9am.sep <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham09/w001001.adf")
#Humidity.9am.oct <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham10/w001001.adf")
#Humidity.9am.nov <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham11/w001001.adf")
#Humidity.9am.dec <-raster("./Environmental layers/Relative Humidity at 9 am/CM10_1975H_Raw_ESRI_RHam_V1.2/CM10_1975H_Raw_ESRI_RHam_V1.2/rham12/w001001.adf")
#Humidity.9am.stack <-stack(Humidity.9am.jan, Humidity.9am.feb, Humidity.9am.mar, Humidity.9am.apr, Humidity.9am.may, Humidity.9am.jun, Humidity.9am.jul, 
#				Humidity.9am.aug, Humidity.9am.sep, Humidity.9am.oct, Humidity.9am.nov, Humidity.9am.dec)#Humidity.9am.mean.20km <-mean(Humidity.9am.stack)
#Humidity.9am.mean.20km <-mask(crop(Humidity.9am.mean.20km,neotrop),neotrop)
#Humidity.9am.mean.10km <-resample(Humidity.9am.mean.20km, bioclim)
#writeRaster(Humidity.9am.mean.10km,"Humidity9amMean10km")
#res(Humidity.9am.mean.10km)
#plot(Humidity.9am.mean.10km)#Humidity.9am.max.20km <-max(Humidity.9am.stack)
#Humidity.9am.max.20km <-mask(crop(Humidity.9am.max.20km,neotrop),neotrop)
#Humidity.9am.max.10km <-resample(Humidity.9am.max.20km, bioclim)
#writeRaster(Humidity.9am.max.10km,"Humidity9amMax10km")
#res(Humidity.9am.max.10km)
#plot(Humidity.9am.max.10km)#Humidity.9am.min.20km <-min(Humidity.9am.stack)
#Humidity.9am.min.20km <-mask(crop(Humidity.9am.min.20km,neotrop),neotrop)
#Humidity.9am.min.10km <-resample(Humidity.9am.min.20km, bioclim)
#writeRaster(Humidity.9am.min.10km,"Humidity9amMin10km")
#res(Humidity.9am.min.10km)
#plot(Humidity.9am.min.10km)### Soil Grids:
# Bulk Density
#BulkDensity.0 <- raster("./Environmental layers/Soil Grids/Bulk Density/BLDFIE_M_sl1_250m.tif")
#BulkDensity.5 <- raster("./Environmental layers/Soil Grids/Bulk Density/BLDFIE_M_sl2_250m.tif")
#BulkDensity.15 <- raster("./Environmental layers/Soil Grids/Bulk Density/BLDFIE_M_sl3_250m.tif")
#BulkDensity.30 <- raster("./Environmental layers/Soil Grids/Bulk Density/BLDFIE_M_sl4_250m.tif")
#BulkDensity <- stack(BulkDensity.0, BulkDensity.5, BulkDensity.15, BulkDensity.30)
#BulkDensity <- mean(BulkDensity)
#BulkDensity <- mask(crop(BulkDensity,neotrop),neotrop)
#BulkDensity <- resample(BulkDensity,bioclim)
#writeRaster(BulkDensity, "BulkDensity.grd")
#res(BulkDensity)# Clay Content
#Clay.0 <- raster("./Environmental layers/Soil Grids/Clay Content/CLYPPT_M_sl1_250m.tif")
#Clay.5 <- raster("./Environmental layers/Soil Grids/Clay Content/CLYPPT_M_sl2_250m.tif")
#Clay.15 <- raster("./Environmental layers/Soil Grids/Clay Content/CLYPPT_M_sl3_250m.tif")
#Clay.30 <- raster("./Environmental layers/Soil Grids/Clay Content/CLYPPT_M_sl4_250m.tif")
#Clay <- stack(Clay.0,Clay.5,Clay.15,Clay.30)
#Clay <- mean(Clay)
#Clay <- mask(crop(Clay,neotrop),neotrop)
#Clay <- resample(Clay, bioclim)
#writeRaster(Clay, "Clay.grd")
#res(Clay)# Coarse Fragments
#Coarse.0 <- raster("./Environmental layers/Soil Grids/Coarse Fragments/CRFVOL_M_sl1_250m.tif")
#Coarse.5 <- raster("./Environmental layers/Soil Grids/Coarse Fragments/CRFVOL_M_sl2_250m.tif")
#Coarse.15 <- raster("./Environmental layers/Soil Grids/Coarse Fragments/CRFVOL_M_sl3_250m.tif")
#Coarse.30 <- raster("./Environmental layers/Soil Grids/Coarse Fragments/CRFVOL_M_sl4_250m.tif")
#Coarse <- stack(Coarse.0,Coarse.5,Coarse.15,Coarse.30)
#Coarse <- mean(Coarse)
#Coarse <- mask(crop(Coarse,neotrop),neotrop)
#Coarse <- resample(Coarse, bioclim)
#writeRaster(Coarse, "Coarse.grd")
#res(Coarse)# Sand Content
#Sand.0 <- raster("./Environmental layers/Soil Grids/Sand Content/SNDPPT_M_sl1_250m.tif")
#Sand.5 <- raster("./Environmental layers/Soil Grids/Sand Content/SNDPPT_M_sl2_250m.tif")
#Sand.15 <- raster("./Environmental layers/Soil Grids/Sand Content/SNDPPT_M_sl3_250m.tif")
#Sand.30 <- raster("./Environmental layers/Soil Grids/Sand Content/SNDPPT_M_sl4_250m.tif")
#Sand <- stack(Sand.0,Sand.5,Sand.15,Sand.30)
#Sand <- mean(Sand)
#Sand <- mask(crop(Sand,neotrop),neotrop)
#Sand <- resample(Sand, bioclim)
#writeRaster(Sand, "Sand.grd")
#res(Sand)# Silt Content
#Silt.0 <- raster("./Environmental layers/Soil Grids/Silt Content/SLTPPT_M_sl1_250m.tif")
#Silt.5 <- raster("./Environmental layers/Soil Grids/Silt Content/SLTPPT_M_sl2_250m.tif")
#Silt.15 <- raster("./Environmental layers/Soil Grids/Silt Content/SLTPPT_M_sl3_250m.tif")
#Silt.30 <- raster("./Environmental layers/Soil Grids/Silt Content/SLTPPT_M_sl4_250m.tif")
#Silt <- stack(Silt.0,Silt.5,Silt.15,Silt.30)
#Silt <- mean(Silt)
#Silt <- mask(crop(Silt,neotrop),neotrop)
#Silt <- resample(Silt, bioclim)
#writeRaster(Silt, "Silt.grd")
#res(Silt)# Predicted Probability of Occurrence of R horizon
#BDRLOG <- raster("./Environmental layers/Soil Grids/BDRLOG/BDRLOG_M_250m.tif")
#BDRLOG <- stack(BDRLOG)
#BDRLOG <- mask(crop(BDRLOG,neotrop),neotrop)
#BDRLOG <- resample(BDRLOG, bioclim)
#writeRaster(BDRLOG, "BDRLOG.grd")
#res(BDRLOG)# Depth to bedrock up to 200m
#BDRICM <- raster("./Environmental layers/Soil Grids/Depth to Bedrock/BDRICM_M_250m.tif")
#BDRICM <- stack(BDRICM)
#BDRICM <- mask(crop(BDRICM,neotrop),neotrop)
#BDRICM <- resample(BDRICM, bioclim)
#writeRaster(BDRICM, "BDRICM.grd")
#res(BDRICM)# Soil organic carbon stock
#CARBON.0 <- raster("./Environmental layers/Soil Grids/Carbon stock/OCSTHA_M_sd1_250m.tif")
#CARBON.5 <- raster("./Environmental layers/Soil Grids/Carbon stock/OCSTHA_M_sd2_250m.tif")
#CARBON.15 <- raster("./Environmental layers/Soil Grids/Carbon stock/OCSTHA_M_sd3_250m.tif")
#CARBON.30 <- raster("./Environmental layers/Soil Grids/Carbon stock/OCSTHA_M_sd4_250m.tif")
#CARBON <- stack(CARBON.0, CARBON.5, CARBON.15, CARBON.30)
#CARBON <- mean (CARBON)
#CARBON <- mask(crop(CARBON,neotrop),neotrop)
#CARBON <- resample(CARBON, bioclim)
#writeRaster(CARBON, "CARBON.grd")
#res(CARBON)# pH in H20
#pH_w.0 <- raster("./Environmental layers/Soil Grids/PHIHOX/PHIHOX_M_sl1_250m.tif")
#pH_w.5 <- raster("./Environmental layers/Soil Grids/PHIHOX/PHIHOX_M_sl2_250m.tif")
#pH_w.15 <- raster("./Environmental layers/Soil Grids/PHIHOX/PHIHOX_M_sl3_250m.tif")
#pH_w.30 <- raster("./Environmental layers/Soil Grids/PHIHOX/PHIHOX_M_sl4_250m.tif")
#pH_w <- stack(pH_w.0,pH_w.5,pH_w.15,pH_w.30)
#pH_w <- mean (pH_w)
#pH_w <- mask(crop(pH_w,neotrop),neotrop)
#pH_w <- resample(pH_w, bioclim)
#writeRaster(pH_w, "pH_w.grd")
#res(pH_w)# pH in KCl
#pH_k.0 <- raster("./Environmental layers/Soil Grids/PHIKCL/PHIKCL_M_sl1_250m.tif")
#pH_k.5 <- raster("./Environmental layers/Soil Grids/PHIKCL/PHIKCL_M_sl2_250m.tif")
#pH_k.15 <- raster("./Environmental layers/Soil Grids/PHIKCL/PHIKCL_M_sl3_250m.tif")
#pH_k.30 <- raster("./Environmental layers/Soil Grids/PHIKCL/PHIKCL_M_sl4_250m.tif")
#pH_k <- stack(pH_k.0,pH_k.5,pH_k.15,pH_k.30)
#pH_k <- mean (pH_k)
#pH_k <- mask(crop(pH_k,neotrop),neotrop)
#pH_k <- resample(pH_k, bioclim)
#writeRaster(pH_k, "pH_k.grd", overwrite=TRUE)
#res(pH_k)#ORCDRC
#ORCDRC.0 <- raster("./Environmental layers/Soil Grids/ORCDRC/ORCDRC_M_sl1_250m.tif")
#ORCDRC.5 <- raster("./Environmental layers/Soil Grids/ORCDRC/ORCDRC_M_sl2_250m.tif")
#ORCDRC.15 <- raster("./Environmental layers/Soil Grids/ORCDRC/ORCDRC_M_sl3_250m.tif")
#ORCDRC.30 <- raster("./Environmental layers/Soil Grids/ORCDRC/ORCDRC_M_sl4_250m.tif")
#ORC <- stack(ORCDRC.0,ORCDRC.5,ORCDRC.15,ORCDRC.30)
#ORC <- mean (ORC)
#ORC <- mask(crop(ORC,neotrop),neotrop)
#ORC <- resample(ORC, bioclim)
#writeRaster(ORC, "ORC.grd")
#res(ORC)# CEC
#CEC.0 <- raster("./Environmental layers/Soil Grids/CECSOL/CECSOL_M_sl1_250m.tif")
#CEC.5 <- raster("./Environmental layers/Soil Grids/CECSOL/CECSOL_M_sl2_250m.tif")
#CEC.15 <- raster("./Environmental layers/Soil Grids/CECSOL/CECSOL_M_sl3_250m.tif")
#CEC.30 <- raster("./Environmental layers/Soil Grids/CECSOL/CECSOL_M_sl4_250m.tif")
#CEC <- stack(CEC.0,CEC.5,CEC.15,CEC.30)
#CEC <- mean (CEC)
#CEC <- mask(crop(CEC,neotrop),neotrop)
#CEC <- resample(CEC, bioclim)
#writeRaster(CEC, "CEC.grd")
#res(CEC)#--------------------------------------------------------------------------------------------#
### IF YOU HAVE ALREADY DOWNLOAD AND TREATED ALL LAYERS, YOU SHOULD CONTINUE FROM HERE ######
#------------------------------------------------------------------------------------------##-----------------------------------#
# Loading environmental layers #####
#-----------------------------------#bioclim <- list.files("./Environmental layers/CHELSA", pattern="grd", full.names=TRUE)
bioclim <- stack(bioclim)
solar.radiation.mean <-raster("./Environmental layers/Solar Radiation/SolarRadiationMean.grd")
names(solar.radiation.mean) = "Solar Rad_Mean"
solar.radiation.max <-raster("./Environmental layers/Solar Radiation/SolarRadiationMax.grd")
names(solar.radiation.max) = "Solar Rad_Max"
solar.radiation.min <-raster("./Environmental layers/Solar Radiation/SolarRadiationMin.grd")
names(solar.radiation.min) = "Solar Rad_Min"
water.vapor.pressure.mean<-raster("./Environmental layers/Water Vapor Pressure/WaterVaporPressureMean.grd")
names(water.vapor.pressure.mean) = "Water Vapor Press_Mean"
water.vapor.pressure.max <-raster("./Environmental layers/Water Vapor Pressure/WaterVaporPressureMax.grd")
names(water.vapor.pressure.max) = "Water Vapor Press_Max"
water.vapor.pressure.min <-raster("./Environmental layers/Water Vapor Pressure/WaterVaporPressureMin.grd")
names(water.vapor.pressure.min) = "Water Vapor Press_Min"
wind.speed.mean <-raster("./Environmental layers/Wind Speed/WindSpeedMean.grd")
names(wind.speed.mean) = "Wind Speed_Mean"
wind.speed.max <-raster("./Environmental layers/Wind Speed/WindSpeedMax.grd")
names(wind.speed.max) = "Wind Speed_Max"
wind.speed.min <-raster("./Environmental layers/Wind Speed/WindSpeedMin.grd")
names(wind.speed.min) = "Wind Speed_Min"
cloud.cover.mean <-raster("./Environmental layers/Cloud Cover/CloudCoverMean.grd")
names(cloud.cover.mean) = "Cloud Cover_Mean"
cloud.cover.max <- raster("./Environmental layers/Cloud Cover/CloudCoverMax.grd")
names(cloud.cover.max) = "Cloud Cover_Max"
cloud.cover.min <- raster("./Environmental layers/Cloud Cover/CloudCoverMin.grd")
names(cloud.cover.min) = "Cloud Cover_Min"
EVI.cv.10km <- raster("./Environmental layers/Enhanced Vegetation Index_cv/EVIcv10km.grd")
names(EVI.cv.10km) = "EVI_cv"
EVI.rng.10km <- raster("./Environmental layers/Enhanced Vegetation Index_rng/EVIrng10km.grd")
names(EVI.rng.10km) = "EVI_rng"
EVI.std.10km <- raster("./Environmental layers/Enhanced Vegetation Index_std/EVIstd10km.grd")
names(EVI.std.10km) = "EVI_std"
FOR.cov <- raster("./Environmental layers/Vegetation coverage/Forest coverage/FORcov.grd")
names(FOR.cov) = "FOREST_cov"
GRASS.cov <- raster("./Environmental layers/Vegetation coverage/Grassland coverage/GRASScov.grd")
names(GRASS.cov) = "GRASS_cov"
WATB.cov <- raster("./Environmental layers/Vegetation coverage/Water Bodies/WATBcov.grd")
names(WATB.cov) = "WATBODIES_cov"
elevation.10km <- raster("./Environmental layers/Elevation/Elevation10km.grd")
names(elevation.10km) = "Elevation"
slope <-raster("./Environmental layers/Slope/Slope.grd")
names(slope) = "Slope"
aspect <-raster("./Environmental layers/Aspect/Aspect.grd")
names(aspect) = "Aspect"
roughness.10km <- raster("./Environmental layers/Terrain Roughness Index/Roughness10km.grd")
names(roughness.10km) = "Roughness"
topowet.10km <- raster("./Environmental layers/Topographic Wetness Index/TopoWet10km.grd")
names(topowet.10km) = "TopoWet"
PET.10km <- raster("./Environmental layers/Potential Evapotranspiration/Global PET - Annual/PET10km.grd")
names(PET.10km) = "Annual PET"
PET.cq <- raster("./Environmental layers/Potential Evapotranspiration/PET Coldest Quarter/PETcq.grd")
names(PET.cq) = "PET_ColdQuart"
PET.dq <- raster("./Environmental layers/Potential Evapotranspiration/PET Driest Quarter/PETdq.grd")
names(PET.dq) = "PET_DriQuart"
PET.wq <- raster("./Environmental layers/Potential Evapotranspiration/PET Warmest Quarter/PETwq.grd")
names(PET.wq) = "PET_WarmQuart"
PET.wetq <-raster("./Environmental layers/Potential Evapotranspiration/PET Wettest Quarter/PETwetq.grd")
names(PET.wetq) = "PET_WetQuart"
PET.seas <-raster("./Environmental layers/Potential Evapotranspiration/PET Seasonality/PETseas.grd")
names(PET.seas) = "PET_Seas"
Aridity.10km <-raster("./Environmental layers/Global Aridity/Global Aridity - Annual/Aridity10km")
names(Aridity.10km) = "Aridity"
AET.10km <-raster("./Environmental layers/Actual Evapotranspiration/Mean Annual AET/AET10km.grd")
names(AET.10km) = "AET" 
SWS.mean.10km <-raster("./Environmental layers/Soil Water Stress/Monthly Soil Water Stress/SWSmean10km.grd")
names(SWS.mean.10km) = "SWS_mean"
SWS.max.10km <-raster("./Environmental layers/Soil Water Stress/Monthly Soil Water Stress/SWSmax10km.grd")
names(SWS.max.10km) = "SWS_max"
SWS.min.10km <-raster("./Environmental layers/Soil Water Stress/Monthly Soil Water Stress/SWSmin10km.grd")
names(SWS.min.10km) = "SWS_min"
relief.10km <-raster("./Environmental layers/Global Relief Model/relief10km.grd")
names(relief.10km) = "Relief"
Humidity.3pm.mean.10km <-raster("./Environmental layers/Relative Humidity 3pm/Humidity3pmMean10km.grd")
names(Humidity.3pm.mean.10km) = "Humidity3pm_mean"
Humidity.3pm.min.10km <-raster("./Environmental layers/Relative Humidity 3pm/Humidity3pmMin10km.grd")
names(Humidity.3pm.min.10km) = "Humidity3pm_min"
Humidity.3pm.max.10km <-raster("./Environmental layers/Relative Humidity 3pm/Humidity3pmMax10km.grd")
names(Humidity.3pm.max.10km) = "Humidity3pm_max"
Humidity.9am.mean.10km <-raster("./Environmental layers/Relative Humidity 9am/Humidity9amMean10km.grd")
names(Humidity.9am.mean.10km) = "Humidity9am_mean"
Humidity.9am.max.10km <-raster("./Environmental layers/Relative Humidity 9am/Humidity9amMax10km.grd")
names(Humidity.9am.max.10km) = "Humidity9am_max"
Humidity.9am.min.10km <-raster("./Environmental layers/Relative Humidity 9am/Humidity9amMin10km.grd")
names(Humidity.9am.min.10km) = "Humidity9am_min"
BulkDensity <- raster("./Environmental layers/Soil Grids/Bulk Density/BulkDensity.grd")
names(BulkDensity) = "BulkDensity"
Clay <- raster("./Environmental layers/Soil Grids/Clay Content/Clay.grd")
names(Clay) = "Clay"
Coarse <- raster("./Environmental layers/Soil Grids/Coarse Fragments/Coarse.grd")
names(Coarse) = "Coarse"
Sand <- raster("./Environmental layers/Soil Grids/Sand Content/Sand.grd")
names(Sand) = "Sand"
Silt <- raster("./Environmental layers/Soil Grids/Silt Content/Silt.grd")
names(Silt) = "Silt"
BDRLOG <- raster("./Environmental layers/Soil Grids/BDRLOG/BDRLOG.grd")
names(BDRLOG) = "BDRLOG"
BDRICM <- raster("./Environmental layers/Soil Grids/Depth to Bedrock/BDRICM.grd")
names(BDRICM) = "BDRICM"
CARBON <- raster("./Environmental layers/Soil Grids/Carbon stock/CARBON.grd")
names(CARBON) = "CARBON"
pH_H20 <- raster("./Environmental layers/Soil Grids/PHIHOX/pH_w.grd")
names(pH_H20) = "pH_H20"
CEC <- raster("./Environmental layers/Soil Grids/CECSOL/CEC.grd")
names(CEC) = "CEC"#------------------------------------------------------------------------#
############### Stacking all environmental layers #######################
#----------------------------------------------------------------------## If you wish to use the layers from WorldClim 2.0 instead of the layers 
# from CHELSA, you should replace bioclim by bio.wc below.bio.crop <- stack(bioclim, solar.radiation.mean, solar.radiation.max, solar.radiation.min, water.vapor.pressure.mean, water.vapor.pressure.max, water.vapor.pressure.min, wind.speed.mean, wind.speed.max, wind.speed.min, cloud.cover.mean, cloud.cover.max, cloud.cover.min,EVI.cv.10km, EVI.rng.10km, EVI.std.10km, FOR.cov, GRASS.cov, WATB.cov,elevation.10km, relief.10km, slope, aspect, roughness.10km, topowet.10km,PET.10km, PET.cq, PET.dq, PET.wq, PET.wetq, PET.seas, Aridity.10km, AET.10km,SWS.mean.10km, SWS.min.10km, SWS.max.10km,Humidity.3pm.mean.10km, Humidity.3pm.min.10km, Humidity.3pm.max.10km, Humidity.9am.mean.10km, Humidity.9am.max.10km, Humidity.9am.min.10km,BulkDensity, Clay, Coarse, Sand, Silt, BDRLOG, BDRICM, CARBON, pH_H20,CEC)
bio.crop
res(bio.crop) ##0.083 = aprox. 10km#----------------------------------------------------------------#
##################### PCA #######################################
#--------------------------------------------------------------#
#install.packages("FactoMineR")
#library(FactoMineR)
#bio.crop.df<-as.data.frame(bio.crop)
#PCA<-PCA(bio.crop.df)memory.limit(1000000)
env.selected1 <- rasterPCA(bio.crop, nComp=13,scores = TRUE, cor=TRUE, spca = TRUE, bylayer=TRUE, filename="PCA.grd", overwrite=TRUE)
# Here I selected the first 13 components because they account for more than 90% 
# of the total variance considering the 70 predictors of this routine for the 
# entire Neotropical Region (10-km resolution).
#env.selected1$model$loadings
#write.table(env.selected1$model$loadings, 'cont.csv', sep = ',')
summary(env.selected1$model) #to verify the explanation of each PCA component
env.selected <-stack(env.selected1$map)
env.selected
res(env.selected)
plot(env.selected)
names(env.selected) #---------------------------------------#
### Loading species occurrence data ####
#-------------------------------------##The species matrix should be exactly as demonstrated below:#sp				lon		lat
#Genera.species1		-000.00	-000.00
#Genera.species1		-000.00	-000.00
#Genera.species1		-000.00	-000.00#Don't forget the '.' between genera and species' epithet
#The same name for the same species
#negative coordinates for South Hemisphere
#positive coordinates for North Hemispherespp<-read.table(file.choose(),header=T,sep=",")
dim(spp)
View(spp)#If you would like to obtain values of the 70 environmental predictors
#for each of your occurrence records:
spp1<-spp[,-1]
View(spp1)
ext<-extract(bio.crop,spp1)
ext<-cbind(spp,ext)
View(ext)
write.table(ext,"Variables for each site.csv")# Visualizing species occurrence records on a map #
data(wrld_simpl)
plot(wrld_simpl, xlim=c(-85, -35), ylim=c(-55, 15), col="lightgray", axes=TRUE)
points(spp$lon, spp$lat, col="black", bg="red", pch=21, cex=1.0, lwd=1.0)# Formating occurences data
table(spp$sp) #The second code (after '$') needs to match the code entered in the matrix sppespecies <- unique(spp$sp) #ditto
especies# Creating objects for models calibration
models1<-c("CTA","RF", "GBM")
models2<-c("MAXENT.Phillips", "GLM", "GAM", "MARS","ANN", "FDA")
n.runs = 2 # number of RUNs (use at least 10)
n.algo1 = length(models1)# number of algorithms
n.algo2 = length(models2) #numero de algorithms
n.conj.pa2 = 2 # set of pseudo-absences (use at least 10)
env.selected = bio.crop
especie = especies[1] # To model without a loop, remove the '#' of this line and add it to the 'for', 'foreach' and '.packages'
#-------------------------#
#beginning of the loop####
#-----------------------#
# for(especie in especies[1:length(especies)]){
# foreach(especie = especies, # For parallel looping (Multiple Species)
# .packages = c("raster", "biomod2", 'sp', "sdmvspecies", "filesstrings")) %dopar% {
# ini1 = Sys.time()
# criando tabela para uma especie
occs <- spp[spp$sp == especie, c("lon", "lat")]# nome = strsplit(as.vector(especie), " ")
# especie = paste(nome[[1]][1], nome[[1]][2], sep = ".")# Selecionado pontos espacialmente únicos #
mask <- env.selected[[1]]
{(cell <-cellFromXY(mask, occs[, 1:2])) # get the cell number for each point(x<-(cbind(occs[, 1:2], cell)))#dup <- duplicated(cbind(occs[, 1:2], cell))(dup2 <- duplicated(cbind(cell)))xv<-data.frame(x,dup2)xv[xv=="TRUE"]<-NA(xv<-na.omit(xv))xv<-xv[,1:2]occs =xv # select the records that are not duplicated
}
occs #pontos espacialmente únicos
dim(occs)#-----------------------------------------------#
# GENERATING OTHER REQUIRED OBJECTS FOR SDM ####
#---------------------------------------------## Convert dataset to SpatialPointsDataFrame (only presences)
myRespXY <-occs[, c("lon", "lat")] #Caso dê algum erro aqui, veja como você intitulou as colunas da sua matriz.
# Creating occurrence data object
occurrence.resp <-  rep(1, length(myRespXY$lon))#------------------------------------------#
# FIT SPECIES DISTRIBUTION MODELS - SDMS ####
#----------------------------------------#try({    coord1 = occssp::coordinates(coord1) <- ~ lon + latraster::crs(coord1) <- raster::crs(env.selected)dist.mean <- mean(sp::spDists(x = coord1,longlat = T,segments = FALSE))dist.min = 5dist.min <-  min(sp::spDists(x = coord1,longlat = T,segments = F))dist.min = 5write.table(c(dist.min, dist.mean),paste0('./outputs/', especie,"_", ".csv"),row.names = F,sep = ",")
})
dim(occs)
PA.number <- length(occs[, 1])
PA.number #número de pontos de ocorrência espacialmente únicosdiretorio = paste0("Occurrence.", especie)##### FORMATING DATA ###### Preparando para CTA, GBM e RF:
sppBiomodData.PA.equal <- BIOMOD_FormatingData(resp.var = occurrence.resp,expl.var = env.selected,resp.xy = myRespXY,resp.name = diretorio,PA.nb.rep = n.conj.pa2, #numero de datasets de pseudoausenciasPA.nb.absences = PA.number, #= numero de pseudoausencias = numero de pontos espacialmente unicosPA.strategy = "disk",# PA.sre.quant = 0.10,PA.dist.min = dist.min * 1000,PA.dist.max = dist.mean * 1000,na.rm = TRUE
)
sppBiomodData.PA.equal#Preparando para os demais algoritmos:
sppBiomodData.PA.10000 <- BIOMOD_FormatingData(resp.var = occurrence.resp,expl.var = env.selected,resp.xy = myRespXY,resp.name = diretorio,PA.nb.rep = n.conj.pa2,PA.nb.absences = 1000,PA.strategy = "disk",# PA.sre.quant = 0.10,PA.dist.min = dist.min * 1000,PA.dist.max = dist.mean * 1000,na.rm = TRUE
)
sppBiomodData.PA.10000#Alocar o Maxent no diretorio correto (certifique-se que o java esteja instalado e atualizado)
#MaxEnt .jar
jar <- paste0(system.file(package = "dismo"), "/java/maxent.jar")
if (file.exists(jar) != T) {url = "http://biodiversityinformatics.amnh.org/open_source/maxent/maxent.php?op=download"download.file(url, dest = "maxent.zip", mode = "wb")unzip("maxent.zip",files = "maxent.jar",exdir = system.file("java", package = "dismo"))unlink("maxent.zip")warning("Maxent foi colocado no diret?rio")
}
system.file("java", package = "dismo")myBiomodOption <-BIOMOD_ModelingOptions(MAXENT.Phillips = list(path_to_maxent.jar = jar))# save.image()
#---------------#
# Modeling ####
#-------------## Com partição treino x teste:
sppModelOut.PA.equal <- BIOMOD_Modeling(sppBiomodData.PA.equal,models =models1,models.options = NULL,NbRunEval = n.runs, #número de repeticoes para cada algoritmoDataSplit = 70,#percentagem de pts para treino.Prevalence = 0.5,VarImport = 0,#caso queira avaliar a importancia das variaveis, mudar para 10 ou 100 permutacoesmodels.eval.meth = c("TSS", "ROC"),SaveObj = TRUE,rescal.all.models = TRUE,do.full.models = FALSE,modeling.id = "spp_presente"
)
# import.var.equal<-data.frame(sppModelOut.PA.equal@variables.importances@val)
# names(import.var.equal)<-rep(c('GBM','CTA','RF'),n.runs + n.conj.pa2)
# import.var.equal
# write.table(import.var.equal,
#             paste0("./outputs/", especie, "_", "Var.import.PA.equal.csv"), sep = ',')sppModelOut.PA.10000 <- BIOMOD_Modeling(sppBiomodData.PA.10000,models = models2,models.options = myBiomodOption,NbRunEval = n.runs,  #número de repetições para cada algoritmoDataSplit = 70, #percentagem de pts para treino.Prevalence = 0.5,VarImport = 0, #caso queira avaliar a importancia das variaveis, mudar para 10 ou 100 permutacoesmodels.eval.meth = c("TSS", "ROC"),SaveObj = TRUE,rescal.all.models = TRUE,do.full.models = FALSE,modeling.id = "spp_presente"
)# import.var.1000<-data.frame(sppModelOut.PA.10000@variables.importances@val)
# names(import.var.1000)<-rep(c("MAXENT.Phillips", "GLM", "GAM", "ANN", "FDA", "MARS"),n.runs + n.conj.pa2)
# import.var.1000
# write.table(import.var.1000,
#             paste0("./outputs/", especie, "_", "Var.import.PA.1000.csv"), sep = ',')#---------------------------------#
# EVALUATE MODELS USING BIOMOD2 ##
#-------------------------------## Sobre as metricas avaliativas,
# ver http://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts##### Evaluation of Models ####
sppModelEval.PA.equal <-get_evaluations(sppModelOut.PA.equal)#GBM, CTA e RF
sppModelEval.PA.equal
write.table(sppModelEval.PA.equal,paste0("./outputs/", especie, "_", "EvaluationsAll_1.csv")
)sppModelEval.PA.10000 <-get_evaluations(sppModelOut.PA.10000) #Os demais.
sppModelEval.PA.10000
write.table(sppModelEval.PA.10000,paste0("./outputs/", especie, "_", "EvaluationsAll_2.csv")
)# Sumarizando as métricas avaliativas
sdm.models1 <-models1
sdm.models1
eval.methods1 <- c("TSS", "ROC") #2 evaluation methods
eval.methods1##### Eval.1 ####means.i1 <- numeric(0)
for (i in 1:n.algo1) {m1 <-sppModelEval.PA.equal[paste(eval.methods1[1]), "Testing.data", paste(sdm.models1[i]), ,]means.i1 = c(means.i1, m1) 
}summary.eval.equal <-data.frame(rep(sdm.models1, each =  n.runs*n.conj.pa2),rep(1:n.conj.pa2, each = n.runs),rep(1:n.runs, n.algo1),means.i1)
names(summary.eval.equal) <- c("Model", "PA","Run", "TSS")
summary.eval.equal
write.table(summary.eval.equal,paste0("./outputs/", especie, "_", "Models1_Evaluation.csv")
)#----------------------------------------------------------------------------------------#
means.i1 <- numeric(0)
for (i in 1:n.algo1) {m1 <-sppModelEval.PA.equal[paste(eval.methods1[2]), "Sensitivity", paste(sdm.models1[i]), ,]means.i1 = c(means.i1, m1)
}summary.eval.equal.1 <-data.frame(means.i1)
summary.eval.equal.1
(test1<-cbind(summary.eval.equal,summary.eval.equal.1))
names(test1)<-c("Model", "PA","Run","TSS","Se")
test1
#----------------------------------------------------------------------------------------#means.i1.1 <- numeric(0)
means.j1.1 <- numeric(2)
for (i in 1:n.algo1){for (j in 1:2){means.j1.1[j] <- mean(sppModelEval.PA.equal[paste(eval.methods1[j]),"Testing.data",paste(sdm.models1[i]),,])}means.i1.1 <- c(means.i1.1, means.j1.1)
}summary.eval.equal.mean <- data.frame(rep(sdm.models1,each=j), rep(eval.methods1,i), means.i1.1)
names(summary.eval.equal.mean) <- c("Model", "Method", "Mean")
summary.eval.equal.mean
write.table(summary.eval.equal.mean,paste0("./outputs/", especie, "_", "Models1_Evaluation_Mean.csv"))sd.i1 <- numeric(0)
sd.j1 <- numeric(2)
for (i in 1:n.algo1) {for (j in 1:2) {sd.j1[j] <-sd(sppModelEval.PA.equal[paste(eval.methods1[j]), "Testing.data", paste(sdm.models1[i]), ,])}sd.i1 <- c(sd.i1, sd.j1)
}summary.eval.equal.sd <-data.frame(rep(sdm.models1, each = 2), rep(eval.methods1, n.algo1), sd.i1)
names(summary.eval.equal.sd) <- c("Model", "Method", "SD")
summary.eval.equal.sd
write.table(summary.eval.equal.sd,paste0("./outputs/", especie, "_", "Models1_Evaluation_SD.csv")
)sdm.models2 <-models2 #7 models
sdm.models2
eval.methods2 <- c("TSS", "ROC") #2 evaluation methods
eval.methods2##### Eval.2 ####means.i2 <- numeric(0)
for (i2 in 1:n.algo2) {m2 <-sppModelEval.PA.10000[paste(eval.methods2[1]), "Testing.data", paste(sdm.models2[i2]), ,]means.i2 = c(means.i2, m2)
}summary.eval.10000 <-data.frame(rep(sdm.models2, each =  n.runs*n.conj.pa2),rep(1:n.conj.pa2, each = n.runs),rep(1:n.runs, n.algo2),means.i2)
names(summary.eval.10000) <- c("Model", "PA","Run", "TSS")
summary.eval.10000
write.table(summary.eval.10000,paste0("./outputs/", especie, "_", "Models2_Evaluation.csv")
)#----------------------------------------------------------------------------------------#
means.i21 <- numeric(0)
for (i21 in 1:n.algo2) {m21 <-sppModelEval.PA.10000[paste(eval.methods2[2]), "Sensitivity", paste(sdm.models2[i21]), ,]means.i21 = c(means.i21, m21)
}summary.eval.10000.1 <-data.frame(means.i21)
summary.eval.10000.1
(test2<-cbind(summary.eval.10000,summary.eval.10000.1))
names(test2)<-c("Model", "PA","Run","TSS","Se")
test2
#----------------------------------------------------------------------------------------#means.i2.2 <- numeric(0)
means.j2.2 <- numeric(2)
for (i in 1:n.algo2){for (j in 1:2){means.j2.2[j] <- mean(sppModelEval.PA.10000[paste(eval.methods2[j]),"Testing.data",paste(sdm.models2[i]),,], na.rm = T)}means.i2.2 <- c(means.i2.2, means.j2.2)
}summary.eval.10000.mean <- data.frame(rep(sdm.models2,each=j), rep(eval.methods2,i), means.i2.2)
names(summary.eval.10000.mean) <- c("Model", "Method", "Mean")
summary.eval.10000.mean
write.table(summary.eval.10000.mean,paste0("./outputs/", especie, "_", "Models2_Evaluation_Mean.csv"))sd.i2 <- numeric(0)
sd.j2 <- numeric(2)
for (i in 1:n.algo2) {for (j in 1:2) {sd.j2[j] <-sd(sppModelEval.PA.10000[paste(eval.methods2[j]), "Testing.data", paste(sdm.models2[i]), ,])}sd.i2 <- c(sd.i2, sd.j2)
}summary.eval.10000.sd <-data.frame(rep(sdm.models2, each = 2), rep(eval.methods2, n.algo2), sd.i2)
names(summary.eval.10000.sd) <- c("Model", "Method", "SD")
summary.eval.10000.sd
write.table(summary.eval.10000.sd,paste0("./outputs/", especie, "_", "Models2_Evaluation_SD.csv")
)#-----------------------------#
# BUILDING OF PROJECTIONS ####
#---------------------------#spp.projections_1 <- BIOMOD_Projection(modeling.output = sppModelOut.PA.equal,new.env = env.selected,proj.name = "Cur1_presente",selected.models = "all",#binary.meth = "ROC",output.format = ".grd"
)spp.projections_2 <- BIOMOD_Projection(modeling.output = sppModelOut.PA.10000,new.env = env.selected,proj.name = "Cur2_presente",selected.models = "all",#binary.meth = "ROC",output.format = ".grd"
)# save.image()
### Definir diretório onde está o arquivo proj_Cur1_presente_Occurrence.grd
projections_1 <-stack(paste0("./",diretorio,"/proj_Cur1_presente/proj_Cur1_presente_Occurrence.",especie,".grd"))
names(projections_1)
summary.eval.equal_1<-test1
x1<-length(na.omit(summary.eval.equal_1$TSS))
summary.eval.equal_1 <-na.omit(summary.eval.equal_1)
summary.eval.equal_1 = summary.eval.equal_1[order(summary.eval.equal_1$Run),]
summary.eval.equal_1 = summary.eval.equal_1[order(summary.eval.equal_1$PA),]summary.eval.equal_1$ID = 1:x1sel = summary.eval.equal_1[summary.eval.equal_1[, "TSS"] > 0.400,]
sel <- na.omit(sel)projections.1 = (subset(projections_1, sel[, "ID"]))
proj.select1 <- names(projections.1)
### Definir diretório onde está o arquivo proj_Cur2_presente_Occurrence.grd
projections_2 <-stack(paste0("./",diretorio,"/proj_Cur2_presente/proj_Cur2_presente_Occurrence.",especie,".grd"))
names(projections_2)
summary.eval.10000_1<-test2
x2<-length(na.omit(summary.eval.10000_1$TSS))
summary.eval.10000_1 <-na.omit(summary.eval.10000_1)
summary.eval.10000_1 = summary.eval.10000_1[order(summary.eval.10000_1$Run),]
summary.eval.10000_1 = summary.eval.10000_1[order(summary.eval.10000_1$PA),]
summary.eval.10000_1$ID = 1:x2sel2 = summary.eval.10000_1[summary.eval.10000_1[, "TSS"] > 0.400,]
sel2 <- na.omit(sel2)projections.2 = (subset(projections_2, sel2[, "ID"]))
proj.select2 <- names(projections.2)
#-----------------------------------------------#
# Mean of the models by algorithm (Present) ####
#---------------------------------------------#
projections.all1 <- stack(projections.1)projections.all2 <- stack(projections.2)#--------------------------------#
# Ensemble - Current Climate ####
#------------------------------#
all.pres<-stack(projections.1, projections.2)# RegressionRG<-c("GLM", "GAM", "FDA", "MARS")
fam.reg<-stack()
for (l in 1:length(RG)) {fam.reg<- stack(fam.reg, subset(all.pres, grep(RG[l], names(all.pres))))
}
fam.reg
fam.reg.m<-mean(fam.reg)
writeRaster(fam.reg.m,filename = paste0("./outputs/", especie, "_", "Regression - Current Climate.tif"),format = "GTiff",overwrite = TRUE
)# Machine LearningMC<-c("MAXENT.Phillips", "RF", "ANN","GBM", "CTA")
fam.mac<-stack()
for (l in 1:length(MC)) {fam.mac<- stack(fam.mac, subset(all.pres, grep(MC[l], names(all.pres))))
}
fam.mac
fam.mac.m<-(mean(fam.mac))
writeRaster(fam.mac.m,filename = paste0("./outputs/", especie, "_", "Machine - Current Climate.tif"),format = "GTiff",overwrite = TRUE
)# All# try({
projections.all.mean <-mean(fam.reg.m,fam.mac.m) / 1000writeRaster(projections.all.mean,filename = paste0("./outputs/", especie, "_", "Ensemble - Current Climate.tif"),format = "GTiff",overwrite = TRUE
)
# })#--------------------------#
# Scores ROC Threshold ####
#------------------------#scores_ROC_equal<-subset(sel, select = c(Model, Se))
scores_ROC_equal[scores_ROC_equal=='-Inf']<-NA
scores_ROC_equal[scores_ROC_equal=='Inf']<-NA
scores_ROC_equal<-na.omit(scores_ROC_equal)
write.table(scores_ROC_equal, paste0("./outputs/",especie, "_", "scores_equal_.csv"))## Evaluation Scores of the  Projections with PA.10000
scores_ROC_10000<-subset(sel2, select = c(Model, Se))
scores_ROC_10000[scores_ROC_10000=='-Inf']<-NA
scores_ROC_10000[scores_ROC_10000=='Inf']<-NA
scores_ROC_10000<-na.omit(scores_ROC_10000)
write.table(scores_ROC_10000, paste0("./outputs/",especie, "_", "scores_10000_.csv"))#Scores mean
t<-rbind(scores_ROC_equal, scores_ROC_10000)
(score.1<-mean(sel$Se))
(score.2<-mean(sel2$Se))
(score.all<-(mean(cbind(score.1,score.2)/100)))
# write.table(th_mean, paste0("./outputs/",especie, "_", "scores_mean.csv"))
# Regression
fam.reg.d<-NULL
for (l in 1:length(RG)) {fam.reg.d<- rbind(fam.reg.d, subset(t, Model== RG[l], select = c(Model, Se)))
}
fam.reg.d.m<-mean(fam.reg.d$Se)# Machine Learning
fam.mac.d<-NULL
for (l in 1:length(MC)) {fam.mac.d<- rbind(fam.mac.d, subset(t, Model== MC[l], select = c(Model, Se)))
}
fam.mac.d.m<-mean(fam.mac.d$Se)# score mean
(s.m<-mean(fam.reg.d.m,fam.mac.d.m)/100)
#-------------------------------------------------------#
# Binary models by each algorithm (Current Climate) ####
#-----------------------------------------------------#
{th<- function(x,y){if("RasterLayer" %in% class(x)){ v<-as.data.frame(x, h=T,xy=F)v[v=='0']<-NAv.l<-na.omit(v)(vlen<-length(v.l))n<-raster::ncell(x)(PR<-vlen/n) # PR}else{ cat("x need be raste layer object")}if("numeric" %in% class(y)){(Se<-y) #Sencitivity 0 to 1(VDl <- Se-PR)}else stop( # VDIcat("y need be numeric object"))PA <- convertToPA(x,PA.method = "probability",prob.method = "logistic",beta = VDl,alpha = -0.05,plot = T)
}
}#---------------------#          
# Ensenble Binary ####
#-------------------#Convert.p<-th(projections.all.mean,s.m)
projections.binary.all <- Convert.p$pa.raster
writeRaster(projections.binary.all,filename = paste0("./outputs/", especie, "_","Ensemble Binary - Current Climate.tif"),format = "GTiff",overwrite = TRUE
)       #--------------------#          # Move the files #####------------------#          #install.packages("filesstrings")results<-list.files("./outputs/",paste0(especie, "_"),full.names = TRUE)file.move((list.files("./outputs/",paste0(especie, "_"),full.names = TRUE)), (paste0("./outputs/", especie)), overwrite = TRUE)#--------------------#          # Time Computing #####------------------#    sink("./outputs/tempo.txt", append = T)print(especie)print(Sys.time() - ini1)sink()}
#END

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/194848.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【半监督学习】CNN与Transformer的结合

本文介绍了几篇结合使用CNN和Transformer进行半监督学习的论文&#xff0c;CNN&Trans&#xff08;MIDL2022&#xff09;&#xff0c;Semi-ViT&#xff08;ECCV2022&#xff09;&#xff0c;Semiformer&#xff08;ECCV2022&#xff09;. Semi-Supervised Medical Image Seg…

【Promise12数据集】Promise12数据集介绍和预处理

【Segment Anything Model】做分割的专栏链接&#xff0c;欢迎来学习。 【博主微信】cvxiayixiao 本专栏为公开数据集的介绍和预处理&#xff0c;持续更新中。 要是只想把Promise12数据集的raw形式分割为png形式&#xff0c;快速导航&#xff0c;直接看2&#xff0c;4标题即可 …

交易机器人-规则部分

微信公众号&#xff1a;大数据高性能计算 背景 背景是基于人工去做交易本身无法做到24小时无时无刻的交易&#xff0c;主要是虚拟币本身它是24小时交易&#xff0c;人无法做到24小时盯盘&#xff0c;其次就是如果你希望通过配置更加复杂的规则甚至需要爬取最新的信息走模型进行…

个人博客添加访问人数以及访问时间-githubpage

layout: post # 使用的布局&#xff08;不需要改&#xff09; title: 个人博客添加访问人数以及访问时间 # 标题 subtitle: 个人博客优化 #副标题 date: 2023-11-18 # 时间 author: BY ThreeStones1029 # 作者 header-img: img/about_bg.jpg #这篇文章标题背景图片 catalog: tr…

MySQL 的执行原理(四)

5.5. MySQL 的查询重写规则 对于一些执行起来十分耗费性能的语句&#xff0c;MySQL 还是依据一些规则&#xff0c;竭尽全力的把这个很糟糕的语句转换成某种可以比较高效执行的形式&#xff0c;这个过程也可以 被称作查询重写。 5.5.1. 条件化简 我们编写的查询语句的搜索条件…

【数据结构初阶】单链表SLlist

描述 不同于顺序表&#xff0c;顺序表的数据是存储在一个连续的空间里的 而链表它是链接起来的结构体地址。 所以我们不用像顺序表一样先创建一块空间出来&#xff0c;而是创建一个能存数据节点和节点与下一个节点之间的连接&#xff1b; 所以&#xff1a;“一个能存数据节点…

redis+python 建立免费http-ip代理池;验证+留接口

前言: 效果图: 对于网络上的一些免费代理ip,http的有效性还是不错的;但是,https的可谓是凤毛菱角; 正巧,有一个web可以用http访问,于是我就想到不如直接拿着免费的HTTP代理去做这个! 思路: 1.单页获取ipporttime (获取time主要是为了后面使用的时候,依照时效可以做文章) 2.整…

STM32串口重定向/实现不定长数据接收

STM32串口重定向/实现不定长数据接收 重定向MicroLIB 不定长数据接收 这是一期STM32内容代码分享&#xff0c;关于STM32重定向的代码和一些出现的问题吗&#xff0c;以及串口接收不定长数据思路 重定向 重定向的功能&#xff1a;能够在STM32中使用printf函数通过串口发送数据 …

Redis:Java客户端

前言 "在当今大数据和高并发的应用场景下&#xff0c;对于数据缓存和高效访问的需求日益增长。而Redis作为一款高性能的内存数据库&#xff0c;以其快速的读写能力和丰富的数据结构成为众多应用的首选。与此同时&#xff0c;Java作为广泛应用于企业级开发的编程语言&…

el-table树形数据隐藏子选择框

0 效果 1 代码 type是table数据中用来区分一级和二级的标识 // 隐藏子合同选择框 cellNone(row) {if (row.row.type 3 || row.row.type 4) {return "checkNone";} }, <style lang"scss" scoped>::v-deep {.checkNone .el-checkbox__input {displa…

INFINI Labs 产品更新 | 发布 Easysearch Java 客户端,Console 支持 SQL 查询等功能

近年来&#xff0c;日志管理平台越来越流行。使用日志管理平台可以实时地、统一地、方便地管理和查看日志&#xff0c;挖掘日志数据价值&#xff0c;驱动运维、运营&#xff0c;提升服务管理效率。 方案架构 Beats 是轻量级采集器&#xff0c;包括 Filebeat、Metricbeat 等。E…

探索计算机视觉技术的应用前景

计算机视觉技术是人工智能领域中一项至关重要的技术&#xff0c;它通过模拟人类视觉系统的工作原理&#xff0c;使计算机能够以一种类似于人类的方式理解和解释图像和视频。这项技术不仅在学术界受到了广泛关注&#xff0c;而且在商业领域也得到了广泛应用。 计算机视觉技术的应…