深度学习笔记之Transformer(八)Transformer模型架构基本介绍

机器学习笔记之Transformer——Transformer模型架构基本介绍

引言

上一节介绍了自注意力机制的基本逻辑,并介绍了位置编码 ( Position Encoding ) (\text{Position Encoding}) (Position Encoding)。本节将介绍 Transformer \text{Transformer} Transformer的模型架构。

回顾:

简单理解: Seq2seq \text{Seq2seq} Seq2seq模型架构与自编码器

Seq2seq \text{Seq2seq} Seq2seq——基本介绍中提到,基于机器翻译任务的 Seq2seq \text{Seq2seq} Seq2seq结构主要包含两个部分:编码器 ( Encoder ) (\text{Encoder}) (Encoder)解码器 ( Decoder ) (\text{Decoder}) (Decoder)。并且这两个部分分别使用独立的循环神经网络来实现输入序列与输出序列的序列长度不同的情况
基于机器翻译的Seq2seq结构
作为个人对编码器、解码器概念上的误区,在稀疏自编码器与变分自编码器中同样认识过编码器、解码器的概念。并且它们从原理上存在相似之处:
该部分属于个人理解,有不同见解的小伙伴欢迎交流讨论。

  • 无论是稀疏自编码器还是变分自编码器,它们都是欠完备自编码器 ( Undercompleter AutoEncoder ) (\text{Undercompleter AutoEncoder}) (Undercompleter AutoEncoder)的一种改良——在不想单纯地将输入分布恒等映射到输出分布动机的基础上,希望隐变量 h h h能够学习到更多优质的特征信息

    同理,在 Seq2seq \text{Seq2seq} Seq2seq结构中,关于编码器的输出—— Context \text{Context} Context向量 C \mathcal C C,它本身就是一个固定大小的向量。虽然它的大小是单个时刻的序列信息,但实际上它包含了整个序列的序列信息。而在解码器中,有效的输入也仅有 C \mathcal C C,这是它们的相似之处。
    无论是 C \mathcal C C还是隐变量 h h h,它们自身是‘不完整/缺失’的,但它们表示的序列信息是丰富的。

它们的不同之处也很明显:

  • 基于欠完备自编码器的动机,在设计策略(损失函数) 的过程中,不仅对真实分布 x x x重构分布 f [ g ( x ) ] f[g(x)] f[g(x)]进行约束,并且还对隐变量 h h h进行稀疏性角度的约束
    L [ x , g ( f ( x ) ) ] + Ω ( h ) h = f ( x ) \mathcal L[x,g(f(x))] + \Omega(h) \quad h = f(x) L[x,g(f(x))]+Ω(h)h=f(x)
    无论是稀疏自编码器还是变分自编码器,它们都使用了 KL \text{KL} KL散度对 隐变量进行了约束:
    其中 ρ j ^ \hat {\rho_j} ρj^表示隐藏层第 j j j个神经元输出 h j h_j hj的期望结果。而 ρ \rho ρ表示人为设置的关于 h h h的‘先验信息’。
    { Sparse AutoEncoder :  J S p a r s e ( W , b ) = L [ x , g ( f ( x ) ) ] + Ω ( h ) = J ( W , b ) + β ⋅ ∑ j = 1 K KL ( ρ ∣ ∣ ρ j ^ ) Variational AutoEncoder :  J V A E = E Q ( h ∣ x ; ϕ ) [ log ⁡ P ( x ∣ h ; θ ) ] − KL [ Q ( h ∣ x ; ϕ ) ∣ ∣ P ( h ) ] \begin{cases} \begin{aligned} \text{Sparse AutoEncoder : }\mathcal J_{Sparse}(\mathcal W,b) & = \mathcal L[x,g(f(x))] + \Omega(h) \\ & = \mathcal J(\mathcal W,b) + \beta \cdot \sum_{j=1}^{\mathcal K} \text{KL}(\rho ||\hat {\rho_j}) \\ \text{Variational AutoEncoder : }\mathcal J_{VAE} & = \mathbb E_{\mathcal Q(h \mid x;\phi)} \left[\log \mathcal P(x \mid h;\theta)\right] - \text{KL} [\mathcal Q(h \mid x;\phi) || \mathcal P(h)] \end{aligned} \end{cases} Sparse AutoEncoder : JSparse(W,b)Variational AutoEncoder : JVAE=L[x,g(f(x))]+Ω(h)=J(W,b)+βj=1KKL(ρ∣∣ρj^)=EQ(hx;ϕ)[logP(xh;θ)]KL[Q(hx;ϕ)∣∣P(h)]
    相反, Seq2seq \text{Seq2seq} Seq2seq目标函数仅仅是一个对生成结果取均值的极大似然估计,它并没有单独对中间变量 C \mathcal C C直接构建策略进行约束:
    arg ⁡ max ⁡ θ log ⁡ P ( Y ∣ X ) = arg ⁡ min ⁡ θ − 1 N ∑ n = 1 N log ⁡ P ( y n ∣ x n ) \mathop{\arg\max}\limits_{\theta} \log \mathcal P(\mathcal Y \mid \mathcal X) = \mathop{\arg\min}\limits_{\theta} -\frac{1}{N} \sum_{n=1}^N \log \mathcal P(y_n \mid x_n) θargmaxlogP(YX)=θargminN1n=1NlogP(ynxn)

自注意力机制

自注意力机制 (Self-Attention) \text{(Self-Attention)} (Self-Attention)核心包含两点:

  • 使用缩放点积 (Scaled Dot-Product) \text{(Scaled Dot-Product)} (Scaled Dot-Product)的方式计算注意力分数 ( Attention Score ) (\text{Attention Score}) (Attention Score)
    a ( Q , K ) = [ Q K T d ] N × M { Q ∈ R N × d K ∈ R M × d a(\mathcal Q,\mathcal K) = \left[\frac{\mathcal Q\mathcal K^T}{\sqrt{d}}\right]_{N \times \mathcal M} \quad \begin{cases} \mathcal Q \in \mathbb R^{N \times d} \\ \mathcal K \in \mathbb R^{\mathcal M \times d} \end{cases} a(Q,K)=[d QKT]N×M{QRN×dKRM×d
    其中 N , M N,\mathcal M N,M分别表示序列 Q , K \mathcal Q,\mathcal K Q,K长度,并且它们中的每一个元素均使用 d d d维特征进行表示
  • 1 1 1的基础上,自注意力机制将 Q , K \mathcal Q,\mathcal K Q,K设置成完全相同的事物。在后续的注意力映射中,被映射的信息 V \mathcal V V同样与 Q , K \mathcal Q,\mathcal K Q,K完全相同:
    { Q , K , V ⇒ X ∈ R T × d Y ∈ R T × d = Softmax { [ X X T d ] T × T } ⋅ [ X ] T × d \begin{cases} \mathcal Q,\mathcal K,\mathcal V \Rightarrow \mathcal X \in \mathbb R^{\mathcal T \times d} \\ \quad \\ \mathcal Y \in \mathbb R^{\mathcal T \times d} =\text{Softmax} \left\{\begin{aligned}\left[\frac{\mathcal X \mathcal X^T}{\sqrt{d}}\right]_{\mathcal T \times \mathcal T}\end{aligned}\right\} \cdot [\mathcal X]_{\mathcal T \times d} \end{cases} Q,K,VXRT×dYRT×d=Softmax{[d XXT]T×T}[X]T×d

通过上述的自注意力过程以及自注意力结果 Y \mathcal Y Y格式,可以判断出:序列 X \mathcal X X内的每个元素分别与 X \mathcal X X所有元素均计算了注意力分数,并将元素对应的分数结果累加并映射在了对应元素中

我们不否认序列 X \mathcal X X中的每个元素都得到了它们对应的注意力信息;但同样存在另一个问题:序列 X \mathcal X X中某元素与所有元素(含自身)所产生的 T \mathcal T T注意力分数之间是离散的

我们在使用压缩点积计算注意力分数时,仅仅使用到了各元素对应的 d d d维表示;也就是说:如果对序列 X \mathcal X X中的元素打乱顺序,并不会影响注意力分数结果。但序列的顺序同样是序列的重要特征。例如:如果将一个文本句子打乱了词的顺序,该句子的语义信息会发生剧烈变化甚至丢失。但仅仅是自注意力机制感应不到这种变化。

在序列中添加位置编码 (Position Encoding) \text{(Position Encoding)} (Position Encoding)能够很好地解决该问题。通过相邻位置元素内同一维度的位置编码信息构成少量错位来使模型感知到元素的上下文关系
详细介绍见上一节,其中 P i , 2 j , P i , 2 j + 1 \mathcal P_{i,2j},\mathcal P_{i,2j+1} Pi,2j,Pi,2j+1分别表示序列中第 i i i个元素内第 2 j , 2 j + 1 2j,2j+1 2j2j+1个维度特征的表示。
{ P i , 2 j = sin ⁡ ( i 1000 0 2 j d ) P i , 2 j + 1 = cos ⁡ ( i 1000 0 2 j d ) \begin{cases} \begin{aligned} \mathcal P_{i,2j} & = \sin \left(\frac{i}{10000^{\frac{2j}{d}}}\right) \\ \mathcal P_{i,2j+1} & = \cos \left(\frac{i}{10000^{\frac{2j}{d}}}\right) \end{aligned} \end{cases} Pi,2jPi,2j+1=sin(10000d2ji)=cos(10000d2ji)

Transformer \text{Transformer} Transformer架构

Transformer模型架构

关于架构的简单认识

关于 Transformer \text{Transformer} Transformer模型的第一印象,就是它依然是编码器——解码器架构。但是它与 Seq2seq \text{Seq2seq} Seq2seq核心区别在于:

Seq2seq \text{Seq2seq} Seq2seq关于序列数据的处理在编码器、解码器中分别使用独立的循环神经网络来获取序列特征;而 Transformer \text{Transformer} Transformer仅通过自注意力位置编码的方式从序列数据中提取序列特征

编码器结构为例。与神经网络类似,其内部包含若干个 Transformer \text{Transformer} Transformer ( Transformer Block ) (\text{Transformer Block}) (Transformer Block),每一个 Transformer \text{Transformer} Transformer块的输出作为下一个 Transformer \text{Transformer} Transformer块的输入。接下来将分别对编码器、解码器中的 Transformer \text{Transformer} Transformer块进行介绍,并观察它们的差异性。

多头注意力机制

基于两个头的自注意力机制示例

关于多头注意力机制 ( Multi-Head Attention ) (\text{Multi-Head Attention}) (Multi-Head Attention),它的逻辑是:并行执行自注意力机制若干次,从而得到不同版本的注意力结果
这种基于基于相同输入,通过不同方式进行学习,并将各学习结果进行处理的思想,使得我们联想到了两个方法: Bagging \text{Bagging} Bagging卷积神经网络

关于 Bagging \text{Bagging} Bagging,其核心思想是通过自助采样法 ( Bootstrapping Sampling ) (\text{Bootstrapping Sampling}) (Bootstrapping Sampling)对数据集合 D \mathcal D D进行 M \mathcal M M独立采样得到相应的新集合 D i ( i = 1 , 2 , ⋯ , M ) \mathcal D_i(i=1,2,\cdots,\mathcal M) Di(i=1,2,,M);针对每一个 D i \mathcal D_i Di使用独立的基学习器进行学习,并将所有基学习器学习的结果根据不同任务进行描述:

  • 关于回归任务:对各基学习器的输出结果均值操作。
  • 关于分类任务:使用多数表决 ( Majority Voting ) (\text{Majority Voting}) (Majority Voting)的方式决定分类结果。

不否认各集合 D i \mathcal D_i Di内的样本间存在差异,但它们描述的分布和 D \mathcal D D对应的真实分布相同;并且这种方式能够有效降低分布的预测方差
仅从操作的角度观察,取均值/投票的方式将各基学习器学习到特征的差异性给‘抹平’了。

关于卷积神经网络,其核心思想是通过相互独立的卷积核对同一输入数据执行卷积操作。每一个卷积核都会得到关于输入数据的抽象信息

  • 每一个卷积核产生的抽象结果被称作一个‘通道’ ( Channel ) (\text{Channel}) (Channel)
  • Bagging \text{Bagging} Bagging方法类似,将若干个‘通道’的抽象信息使用‘池化’ ( Pooling ) (\text{Pooling}) (Pooling)的方式对各通道的特征进行归纳/筛选。无论是‘最大池化'还是‘平均池化’,依然没有保留差异信息。

并不是说没有保留差异信息就是缺陷,这需要根据具体任务具体分析。在序列信息的处理过程中,这种差异性是有必要的。我们需要更好地处理这种差异性。

关于多头注意力机制的执行过程表示如下:

  • 将添加位置编码的输入数据 X \mathcal X X通过独立全连接层 ( Fully Connected Layer,FC ) (\text{Fully Connected Layer,FC}) (Fully Connected Layer,FC)得到相应的特征信息 Q , K , V \mathcal Q,\mathcal K,\mathcal V Q,K,V
    { Q = [ W Q ] T X + b Q K = [ W K ] T X + b K V = [ W V ] T X + b V \begin{cases} \mathcal Q = [\mathcal W_{\mathcal Q}]^T \mathcal X + b_{\mathcal Q} \\ \mathcal K = [\mathcal W_{\mathcal K}]^T \mathcal X + b_{\mathcal K} \\ \mathcal V = [\mathcal W_{\mathcal V}]^T \mathcal X + b_{\mathcal V} \end{cases} Q=[WQ]TX+bQK=[WK]TX+bKV=[WV]TX+bV
  • 这仅仅是一个自注意力机制内的特征表示,假设多头注意力机制中包含 M \mathcal M M独立的自注意力机制,对应的特征信息表示如下:
    每个特征信息对应的权重也均是相互独立的。
    Q ( i ) , K ( i ) , V ( i ) ( i = 1 , 2 , ⋯ , M ) \mathcal Q^{(i)},\mathcal K^{(i)},\mathcal V^{(i)} \quad (i=1,2,\cdots,\mathcal M) Q(i),K(i),V(i)(i=1,2,,M)
  • 每一个执行各自的自注意力机制
    这里 A ( i ) \mathcal A^{(i)} A(i)表示第 i i i自注意力机制的输出特征。
    { a [ Q ( i ) , K ( i ) ] = Q ( i ) [ K ( i ) ] T d A ( i ) = Softmax { a [ Q ( i ) , K ( i ) ] } V ( i ) i = 1 , 2 , ⋯ , M \begin{cases} \begin{aligned} & a \left[\mathcal Q^{(i)},\mathcal K^{(i)}\right] = \frac{\mathcal Q^{(i)}[\mathcal K^{(i)}]^T}{\sqrt{d}} \\ & \mathcal A^{(i)} = \text{Softmax} \left\{ a \left[\mathcal Q^{(i)},\mathcal K^{(i)}\right]\right\}\mathcal V^{(i)} \end{aligned} \end{cases} \quad i=1,2,\cdots,\mathcal M a[Q(i),K(i)]=d Q(i)[K(i)]TA(i)=Softmax{a[Q(i),K(i)]}V(i)i=1,2,,M
  • M \mathcal M M个输出特征进行拼接 ( Concatenate ) (\text{Concatenate}) (Concatenate),并再次使用全连接层进行特征表示
    Bagging \text{Bagging} Bagging与卷积神经网络相比,这种 Concatenate \text{Concatenate} Concatenate加全连接层的方式保留了各个自注意力机制产生的差异性信息。
    { A = Concat [ A ( 1 ) , A ( 2 ) , ⋯ , A ( M ) ] O = [ W A ] T A + b A \begin{cases} \mathcal A & = \text{Concat}\left[\mathcal A^{(1)},\mathcal A^{(2)},\cdots,\mathcal A^{(\mathcal M)}\right] \\ \mathcal O & = [\mathcal W_{\mathcal A}]^T \mathcal A + b_{\mathcal A} \end{cases} {AO=Concat[A(1),A(2),,A(M)]=[WA]TA+bA

包含掩码的多头注意力机制

解码器模块中,不仅包含多头注意力机制,并且还包含带掩码的多头注意力机制。带掩码操作的多头注意力机制的思想在于:

回顾 Seq2seq \text{Seq2seq} Seq2seq模型执行机器翻译任务的过程中,以包含注意力机制的模型为例,它的输入包含 3 3 3项信息:
y ( t ) = G [ y ( t − 1 ) , C t , h D ( t − 1 ) ] y^{(t)} = \mathcal G \left[y^{(t-1)},\mathcal C_t,h_{\mathcal D}^{(t-1)}\right] y(t)=G[y(t1),Ct,hD(t1)]
其中:

  • y ( t − 1 ) y^{(t-1)} y(t1)表示解码器 t − 1 t-1 t1时刻的输出信息;
  • C t \mathcal C_t Ct表示解码器 t t t时刻与编码器所有时刻输出的注意力信息
  • h D ( t − 1 ) h_{\mathcal D}^{(t-1)} hD(t1)表示解码器 t − 1 t-1 t1时刻产生的序列信息;

很明显,对当前时刻的预测信息当前时刻的信息以及后续时刻信息之间没有关联关系。

虽然在 Transformer \text{Transformer} Transformer的解码器中不会像 Seq2seq \text{Seq2seq} Seq2seq一样一个时刻仅预测一个元素,而是所有时刻结果全部输出。但在预测过程中与 Seq2seq \text{Seq2seq} Seq2seq同理:解码器对序列中一个元素进行预测时,不应该考虑当前时刻以及后续时刻元素信息
以未来时刻信息作为条件下,对未来信息进行预测。这是不合理的。

这种操作在 Transformer \text{Transformer} Transformer中使用掩码 ( Mask ) (\text{Mask}) (Mask)的方式进行表示:如果对序列数据 X \mathcal X X中的第 i i i个元素 x i x_i xi进行预测时,就将其看作是预测该序列中的最后一个元素,而后续的 x i + 1 , x i + 2 , ⋯ x_{i+1},x_{i+2},\cdots xi+1,xi+2,等等被 Mask \text{Mask} Mask

基于位置信息的前馈神经网络

多头注意力机制中输出的数据格式表示为: [ BatchSize,SeqLength,Dimension ] [\text{BatchSize,SeqLength,Dimension}] [BatchSize,SeqLength,Dimension]。其中 BatchSize \text{BatchSize} BatchSize表示批次内样本数量; SeqLength \text{SeqLength} SeqLength表示序列长度; Dimension \text{Dimension} Dimension表示输出序列信息中各元素的向量表示维数。
其中 Dimension \text{Dimension} Dimension是由多头注意力机制累积下来的维数结果。

需要注意的是:不同序列 SeqLength \text{SeqLength} SeqLength存在差异。这个差异是输入序列自身的性质,与模型自身无关。理论上认为:模型可以处理任意长度的序列信息,因而不能将序列长度这个参数作为模型的参数

基于位置信息的前馈神经网络 ( Position-wise FeedForward Network ) (\text{Position-wise FeedForward Network}) (Position-wise FeedForward Network)自身就是一组全连接层。而它的主要作用是对注意力机制的输出特征进行非线性变换。由于上面的要求,这个非线性变换作用的对象并不是一个序列,而是序列中的每一个元素

该网络由两个线性计算层和一个 ReLU \text{ReLU} ReLU激活函数构成:
{ O ~ 1 = x W 1 + b 1 O 1 = ReLU ( O ~ 1 ) = max ⁡ ( 0 , O ~ 1 ) O 2 = O 1 W 2 + b 2 \begin{cases} \widetilde{\mathcal O}_1 = x \mathcal W_1 + b_1 \\ \mathcal O_1 = \text{ReLU}(\widetilde{\mathcal O}_1) = \max(0,\widetilde{\mathcal O}_1)\\ \mathcal O_2 = \mathcal O_1 \mathcal W_2 + b_2 \end{cases} O 1=xW1+b1O1=ReLU(O 1)=max(0,O 1)O2=O1W2+b2
其中 W 1 ∈ R Dimension × d F F N ; W 2 ∈ R d F F N × Dimension \mathcal W_1 \in \mathbb R^{\text{Dimension} \times d_{FFN}};\mathcal W_2 \in \mathbb R^{d_{FFN} \times \text{Dimension}} W1RDimension×dFFN;W2RdFFN×Dimension,其中 d F F N d_{FFN} dFFN表示前馈神经网络中隐藏层的维数大小。很明显:无论是 W 1 , W 2 \mathcal W_1,\mathcal W_2 W1,W2还是 b 1 , b 2 b_1,b_2 b1,b2,它们的维数信息与序列长度 SeqLength \text{SeqLength} SeqLength没有任何关系。只要关于元素的模型参数学习好了, SeqLength \text{SeqLength} SeqLength无论长短都可以进行训练。

终上,我们要将非线性变换的关注点在于序列中的每一个元素,并且消除 SeqLength \text{SeqLength} SeqLength这个维度对模型的影响,因此执行过程表示如下:
其具体做法可看作是将所有文本序列‘全部首尾连接在一起,构成一个‘超长序列’。这个思路与 Word2vec \text{Word2vec} Word2vec系列模型的假设存在相似之处。

  • Multi-Head Attention \text{Multi-Head Attention} Multi-Head Attention部分的输出格式 3 3 3维格式: [ BatchSize,SeqLength,Dimension ] [\text{BatchSize,SeqLength,Dimension}] [BatchSize,SeqLength,Dimension]修改为 2 2 2维格式: [ BatchSize * SeqLength,Dimension ] [\text{BatchSize * SeqLength,Dimension}] [BatchSize * SeqLength,Dimension]
    这个操作本身就是为了‘模糊’掉 SeqLength \text{SeqLength} SeqLength这个维度在前馈神经网络中的作用。但在 PyTorch \text{PyTorch} PyTorch中,这个操作都不需要做。因为 PyTorch \text{PyTorch} PyTorch中的 nn.Linear() \text{nn.Linear()} nn.Linear()只会将最后一个维度作为特征维度。

  • 将修改后特征作为前馈神经网络的输入,并得到对应的输出结果格式: [ BatchSize * SeqLength,Dimension ] \left[\text{BatchSize * SeqLength,Dimension}\right] [BatchSize * SeqLength,Dimension]
    基于上述 W 1 , W 2 \mathcal W_1,\mathcal W_2 W1,W2格式的描述,输出格式结果不会发生变化。

  • 最后将输出结果格式由 [ BatchSize * SeqLength,Dimension ] [\text{BatchSize * SeqLength,Dimension}] [BatchSize * SeqLength,Dimension]还原回原始格式 [ BatchSize,SeqLength,Dimension ] [\text{BatchSize,SeqLength,Dimension}] [BatchSize,SeqLength,Dimension]

残差网络与层标准化操作

关于残差网络 ( Residual Network ) (\text{Residual Network}) (Residual Network)这里不再赘述,详见传送门。

在执行神经网络的反向传播过程中,随着 Transformer Block \text{Transformer Block} Transformer Block块的增多(神经网络的深度增加),导致注意力层或者全连接神经网络层中的权重信息不可避免地会出现特征空间偏移的情况。因而我们需要对特征进行归一化操作,从而增加模型的收敛速度。

批标准化 ( Batch Normalization,BN ) (\text{Batch Normalization,BN}) (Batch Normalization,BN)并不适合用在序列长度可能存在差异自然语言处理任务中,因而使用层标准化的方式执行归一化操作。层标准化的核心思路在于:在同一 Batch \text{Batch} Batch内的各样本之间独立同分布
关于层标准化传送门

  • 关于层标准化的具体操作表示如下:
    分别使用torch,手动(manual)分别实现 Layer Normalization \text{Layer Normalization} Layer Normalization,结果相同。
import numpy as np
from torch import nn as nn
import torchdef LayerNormTest(mode):arr1 = np.arange(1, 26).reshape(5,5,1)arr2 = np.arange(11, 36).reshape(5,5,1)arr3 = np.arange(31, 56).reshape(5,5,1)arr = torch.tensor(np.concatenate([arr1,arr2,arr3],axis=2)).float()arr = torch.permute(arr,(2,0,1)).unsqueeze(0)assert mode in ["torch","manual"]if mode == "torch":Norm = nn.LayerNorm([3,5,5])arrNorm = Norm(arr)else:U = arr.mean()S = (arr - U).pow(2).mean()arrNorm = (arr - U) / torch.sqrt(S + 1e-5)return arrNormif __name__ == '__main__':a1 = LayerNormTest(mode="torch")a2 = LayerNormTest(mode="manual")print(a1)print("---" * 30)print(a2)
  • 可以观察到,它的均值结果U方差结果S均是一个标量;也就是说: LayerNorm \text{LayerNorm} LayerNorm基于整个 Batch \text{Batch} Batch内所有元素执行的均值方差操作。而这种做法的底层逻辑是:它将该 Batch \text{Batch} Batch内的各样本看作成一个独立的数据集来执行标准化。根据 Batch \text{Batch} Batch的定义, Batch \text{Batch} Batch自身就是训练集随机采样产生的一个子集,因而各个 Batch \text{Batch} Batch的分布是相似的,并且理论上都趋近于样本真实分布
print(U)
tensor(26.3333)
print(S)
tensor(207.5555)

编码器的输出与信息传递

回归上图:

  • 其中左侧虚线框中描述的 Transformer \text{Transformer} Transformer模块是一个编码器 ( Encoder ) (\text{Encoder}) (Encoder)模块;图中仅仅画了一个,但实际上,和深度神经网络相同,可以通过叠加编码器模块,使其增加编码器的神经网络深度;从而最终得到一个类似于 Seq2seq \text{Seq2seq} Seq2seq模型 Context \text{Context} Context向量 C \mathcal C C作用的编码器输出
    Transformer编码器部分

  • 右侧虚线框中描述的 Transformer \text{Transformer} Transformer模块是一个解码器 ( Decoder ) (\text{Decoder}) (Decoder)模块;与编码器部分相似,它同样可以通过叠加解码器模块来增加解码器的神经网络深度

    但与 Seq2seq \text{Seq2seq} Seq2seq模型不同的是: Transformer \text{Transformer} Transformer块自身并不是一个类似于 RNN \text{RNN} RNN循环结构,因此不同于 Seq2seq \text{Seq2seq} Seq2seq解码器仅将 Context \text{Context} Context向量 C \mathcal C C作为初始时刻的隐藏层输入 Transformer \text{Transformer} Transformer的解码器部分需要每一个解码器模块均需要编码器输出结果作为输入;并且是作为 Multi-Head Attention \text{Multi-Head Attention} Multi-Head Attention Query \text{Query} Query Key \text{Key} Key的输入;Transformer编码器输出信息的传递过程
    并且要求编码器与解码器 Transformer \text{Transformer} Transformer块的数量是相等的。
    这里有一点不太理解,因为 Encoder \text{Encoder} Encoder内的 Transformer \text{Transformer} Transformer块在执行隐藏层状态的运算中,并没有与 Decoder \text{Decoder} Decoder中对应位置的 Transformer \text{Transformer} Transformer块之间存在关联关系,感觉只和 Encoder Output \text{Encoder Output} Encoder Output有关系,也有可能上面的图画错了,欢迎小伙伴们一起讨论。

  • 并且编码器的输出作为每一个解码器 Transformer \text{Transformer} Transformer模块多头注意力机制的 Key,Value \text{Key,Value} Key,Value;而 Query \text{Query} Query来自于目标序列(解码器自身的输入)。

关于预测问题

关于预测问题,我们早在动态模型的推断任务中就介绍过这个概念。已知 t t t个观测值,预测第 t + 1 t+1 t+1个预测值的后验分布
P ( o t + 1 ∣ o 1 , o 2 , ⋯ , o t ) \mathcal P(o_{t+1} \mid o_1,o_2,\cdots,o_t) P(ot+1o1,o2,,ot)
而关于 Transformer \text{Transformer} Transformer的预测任务中,前 t t t个观测值也是通过预测得到的。在解码器模块的自注意力机制对于 t + 1 t+1 t+1时刻信息的预测过程中,首先会使用 t t t个预测结果分别作为 Key,Values \text{Key,Values} Key,Values;而 t t t个值作为 Query \text{Query} Query来参与多头注意力机制的计算过程。

相关参考:
Transformer 、Reformer知识点整理
nn.LayerNorm的实现及原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/19513.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

40.RocketMQ之高频面试题大全

消息中间件如何选型 RabbitMQ erlang开发,对消息堆积的支持并不好,当大量消息积压的时候,会导致 RabbitMQ 的性能急剧下降。每秒钟可以处理几万到十几万条消息。 RocketMQ java开发,面向互联网集群化功能丰富,对在线业…

MySQL物理文件----日志文件(错误日志、通用查询日志、二进制日志、慢查询日志)

文章目录 MYSQL5.7/8.0支持的几种日志文件1、错误日志(Error log)2、一般或通用查询日志(General query log)3、二进制日志(Binary log)3、1 查看是否开启二进制日志3、2二进制日志开启3、3查看二进制文件位…

简单爬虫项目练习

爬虫项目练习 前言任务基本爬虫框架URL管理器Html 下载器HTML 解析器数据存储器爬虫调度器效果分析 前言 自学,参考书籍为 Python爬虫开发与项目实战 ,具体参考了该书的第六章。过程中出现两个问题: 在 Pycharm 上实现时发现有些库名更改及…

自定义程序包不存在的解决方法

方案一&#xff1a; 在pom文件中加入以下代码 <plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-surefire-plugin</artifactId><version>2.4.2</version><configuration><skipTests>true</sk…

java并发编程原理-----线程

目录 上下文切换 java代码创建线程的两种方式 线程的五个状态 线程join方法 多线程之间的影响 上下文切换 CPU的每一个核心同一时刻只能执行一个线程&#xff0c;但是我们会发现电脑同一时刻现实会进行几千个线程&#xff0c;这就是cpu在快速的切换执行线程&#xff0c;由…

最早做「行业化」安全托管MSS的厂商,现在怎么样了?

科技云报道原创。 1家三甲医院&#xff0c;4个院区&#xff0c;9万台终端&#xff0c;数千台服务器&#xff0c;只配备1个安全运营人员&#xff0c;换做任何一家企事业单位都不敢想象&#xff0c;但武汉某医院却实现了7*24小时的自动化监测响应&#xff0c;所有威胁均可在1小时…

基础篇--初识STM32

初识STM32 STM32是什么 ST&#xff1a;意法半导体 M&#xff1a;MCU/MPU32:32位 ST累计推出了&#xff1a;5大类、18个系列、1000多个型号的Cortex内核微控制器 STM32芯片分类 ST中文社区网&#xff1a;https://www.stmcu.org.cn/ ST官网&#xff1a;https://www.st.com …

【从零开始学习CSS | 第一篇】选择器介绍

目录 前言&#xff1a; 选择器介绍&#xff1a; 各类选择器&#xff1a; 总结&#xff1a; 前言&#xff1a; 本文以及后续几篇文章我们将会集中介绍CSS中的常见选择器&#xff0c;选择器的出现可以让我们实现对具体的元素标签进行定制&#xff0c;因此我们要掌握好各类选择…

python+unittest+requests+HTMLRunner搭建接口测试框架,执行用例请求多个不同请求方式的接口

问题描述&#xff1a; 搭建接口测试框架&#xff0c;执行用例请求多个不同请求方式的接口 实现步骤&#xff1a; ① 创建配置文件config.ini&#xff0c;写入部分公用参数&#xff0c;如接口的基本url、测试报告文件路径、测试数据文件路径等配置项 1 [DATABASE] 2 data_addre…

蚂蚁集团开源可信隐私计算框架「隐语」:开放、通用

7 月 4 日,蚂蚁集团宣布面向全球开发者正式开源可信隐私计算框架 “隐语”。 隐语是蚂蚁集团历时 6 年自主研发,以安全、开放为核心设计理念打造的可信隐私计算技术框架,涵盖了当前几乎所有主流隐私计算技术。 据介绍,隐语内置 MPC、TEE、同态等多种密态计算虚拟设备,提…

爱尔四川眼科医院—四川大学华西联盟医院隆重揭牌

为积极响应国家“健康中国”“创新发展”战略&#xff0c;全面深化“产教融合”、“校企合作”、“医工融合”&#xff0c;推动“名校名企” 双赢合作&#xff0c;提升中国眼科领域人才核心竞争力&#xff0c;继2021年9月23日四川大学与爱尔眼科战略合作签约后&#xff0c;2023…

【数据结构】排序:插入排序与希尔排序详解

本章开始就要分享一些常用的排序方法&#xff0c;我们的日常生活中很多地方都要使用排序&#xff0c;比如电商平台可以按照你的需求进行排序&#xff0c;或者是你想了解大学的综合排名时 我们之前也学到过一些简单的排序比如冒泡排序&#xff0c;虽然他在时间复杂度上可以说是依…