李宏毅2023机器学习作业HW05解析和代码分享

ML2023Spring - HW5 相关信息:
课程主页
课程视频
Sample code
HW05 视频
HW05 PDF

个人完整代码分享: GitHub | Gitee | GitCode
运行日志记录: wandb

P.S. HW05/06 是在 Judgeboi 上提交的,完全遵循 hint 就可以达到预期效果。

因为无法在 Judgeboi 上提交,所以 HW05/06 代码仓库中展示的是在验证集上的分数。

每年的数据集 size 和 feature 并不完全相同,但基本一致,过去的代码仍可用于新一年的 Homework。

仓库中 HW05 的代码分成了英文 EN 和中文 ZH 两个版本。

(碎碎念:翻译比较麻烦,所以之后的 Homework 代码暂只有英文版本)

任务目标(seq2seq)

  • Machine translation 机器翻译,英译中

性能指标(BLEU)

参考链接:

BLEU: a Method for Automatic Evaluation of Machine Translation

Foundations of NLP Explained — Bleu Score and WER Metrics

BLEU(Bilingual Evaluation Understudy) 双语评估替换

公式:
BLEU = B P ⋅ exp ⁡ ( ∑ n = 1 N w n l o g p n ) 1 N \text{BLEU} = BP \cdot \exp\left( \sum_{n=1}^{N} w_n log\ p_n\right)^{\frac{1}{N}} BLEU=BPexp(n=1Nwnlog pn)N1
首先要明确两个概念

  1. N-gram
    用来描述句子中的一组 n 个连续的单词。比如,“Thank you so much” 中的 n-grams:

    • 1-gram: “Thank”, “you”, “so”, “much”
    • 2-gram: “Thank you”, “you so”, “so much”
    • 3-gram: “Thank you so”, “you so much”
    • 4-gram: “Thank you so much”

    需要注意的一点是,n-gram 中的单词是按顺序排列的,所以 “so much Thank you” 不是一个有效的 4-gram。

  2. 精确度(Precision)
    精确度是 Candidate text 中与 Reference text 相同的单词数占总单词数的比例。 具体公式如下:
    $ \text{Precision} = \frac{\text{Number of overlapping words}}{\text{Total number of words in candidate text}} $
    比如:
    Candidate: Thank you so much, Chris
    Reference: Thank you so much, my brother
    这里相同的单词数为4,总单词数为5,所以 Precision = 4 5 \text{Precision} = \frac{{4}}{{5}} Precision=54
    但存在一个问题:

    • Repetition 重复

      Candidate: Thank Thank Thank
      Reference: Thank you so much, my brother

      此时的 Precision = 3 3 \text{Precision} = \frac{{3}}{{3}} Precision=33

解决方法:Modified Precision

很简单的思想,就是匹配过的不再进行匹配。

Candidate: Thank Thank Thank
Reference: Thank you so much, my brother

Precision 1 = 1 3 \text{Precision}_1 = \frac{{1}}{{3}} Precision1=31

  • 具体计算如下:

    C o u n t c l i p = min ⁡ ( C o u n t , M a x _ R e f _ C o u n t ) = min ⁡ ( 3 , 1 ) = 1 Count_{clip} = \min(Count,\ Max\_Ref\_Count)=\min(3,\ 1)=1 Countclip=min(Count, Max_Ref_Count)=min(3, 1)=1
    $ p_n = \frac{\sum_{\text{n-gram}} Count_{clip}}{\sum_{\text{n-gram}} Count} = \frac{1}{3}$

现在还存在一个问题:译文过短

Candidate: Thank you
Reference: Thank you so much, my brother

p 1 = 2 2 = 1 p_1 = \frac{{2}}{{2}} = 1 p1=22=1

这里引出了 brevity penalty,这是一个惩罚因子,公式如下:

B P = { 1 if  c > r e 1 − r c if  c ≤ r BP = \begin{cases} 1& \text{if}\ c>r\\ e^{1-\frac{r}{c}}& \text{if}\ c \leq r \end{cases} BP={1e1crif c>rif cr

其中 c 是 candidate 的长度,r 是 reference 的长度。

当候选译文的长度 c 等于参考译文的长度 r 的时候,BP = 1,当候选翻译的文本长度较短的时候,用 e 1 − r c e^{1-\frac{r}{c}} e1cr 作为 BP 值。

回到原来的公式:$ \text{BLEU} = BP \cdot \exp\left( \sum_{n=1}^{N} w_n log\ p_n\right)^{\frac{1}{N}}$,汇总一下符号定义:

  • B P BP BP 文本长度的惩罚因子
  • N N N n-gram 中 n 的最大值,作业中设置为 4。
  • w n w_n wn 权重
  • p n p_n pn n-gram 的精度 (precision)

数据解析

  • Paired data
    • TED2020: 演讲
      • Raw: 400,726 (sentences)
      • Processed: 394, 052 (sentences)
    • 英文和中文两个版本
  • Monolingual data
    • 只有中文版本的 TED 演讲数据

Baselines

这里存在一个问题,就是HW05是在 Judgeboi 上进行提交的,所以没办法获取最终的分数,所以简单的使用 simple baseline 对应的 validate BLEU 来做个映射。

因为有 EN / ZH 两个版本,对于每个 hint 我会给出代码的修改位置方便大家索引。

Simple baseline (15.05)

  • 运行所给的 sample code

Medium baseline (18.44)

  • 增加学习率的调度 (Optimizer: Adam + lr scheduling / 优化器: Adam + 学习率调度)
  • 训练得更久 (Configuration for experiments / 实验配置)
    这里根据预估的时间,可以简单的将 epoch 设置为原来的两倍。

Strong baseline (23.57)

  • 将模型架构转变为 Transformer (Model Initialization / 模型初始化)
  • 调整超参数 (Architecture Related Configuration / 架构相关配置)
    这里需要参考 Attention is all you need 论文中 table 3 的 transformer-base 超参数设置。
    image-20231115135033382

你可以仅遵循 sample code 的注释,将 encoder_layer 和 decoder_layer 改为 4(简单的将这一个改动称之为 transformer_4layer),此时模型的参数数量会和之前的 RNN 差不多,在 max_epoch =30 的情况下,Bleu 可以达到 23.59。

代码仓库中分享的 Strong 代码完全遵循了 transformer-base 的超参数设置,此时的模型参数将约为之前 RNN 的 5 倍,每一轮训练的时间约为 transform_4layer 的三倍,所以我将 max_epoch 设置为了 10,让其能够匹配上预估的时间,此时的 Bleu 为 24.91。如果将 max_epoch 设置为 30,最终的 Bleu 可以达到 27.48。

下面是二者实验对比。

Boss baseline (30.08)

  • 应用 back-translation (TODO)

    这里我们需要交换实验配置 config 中的 source_lang 和 target_lang,并修改 savedir,训练一个 back-translation 模型后再修改回原来的 config。

    然后你需要将 TODO 的部分完善,修改并复用之前的函数就可以达到目的。

    (为了与预估时间匹配,这里将 max_epoch 设置为 30 进行实验。)

代码仓库中分享的 Boss 代码展示的是最终训练的结果,完整的运行流程是:

  1. 实验配置中 / Configuration for experimentsBACK_TRANSLATION 设置为 True 运行
    训练一个 back-translation 模型,并处理好对应的语料。
  2. 实验配置 / Configuration for experiments 中的 BACK_TRANSLATION 设置为 False 运行
    结合 ted2020 和 mono (back-translation) 的语料进行训练。

Gradescope

Visualize Positional Embedding

你可以直接在 确定用于生成 submission 的模型权重 / Confirm model weights used to generate submission 后进行处理,在仓库的代码中我已经提前注释掉了 训练循环 / Training loop 中的训练部分,如果在之前,模型没有训练,直接运行代码会报错。

image-20231119122408389

添加的处理代码如下(可以复制下面的处理代码放到你的 submission 模块之后):

推荐阅读:All Pairs Cosine Similarity in PyTorch

pos_emb = model.decoder.embed_positions.weights.cpu().detach()# 计算余弦相似度矩阵
def get_cosine_similarity_matrix(x):x = x / x.norm(dim=1, keepdim=True)sim = torch.mm(x, x.t())return simsim = get_cosine_similarity_matrix(pos_emb)
#sim = F.cosine_similarity(pos_emb.unsqueeze(1), pos_emb.unsqueeze(0), dim=2) # 一样的# 绘制位置向量的余弦相似度矩阵的热力图
plt.imshow(sim, cmap="hot", vmin=0, vmax=1)
plt.colorbar()plt.show()

Clipping Gradient Norm

只需要将 config.wandb 设置为 True 即可,此时可以在 wandb 上查看。

image-20231119183413555

或者直接在 train_one_epoch 添加一下处理代码,记录 gnorm。

image-20231119183535765

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/195474.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机系统的层次结构和性能指标

目录 五层结构三个级别语言 计算机性能指标CPU性能指标系统整体的性能指标 五层结构 三个级别语言 编译程序:将高级语言编写的源程序全部语句一次全部翻译成机器语言程序,而后再执行机器语言程序(只需翻译一次) 解释程序&#xff…

常见树种(贵州省):003柏类

摘要:本专栏树种介绍图片来源于PPBC中国植物图像库(下附网址),本文整理仅做交流学习使用,同时便于查找,如有侵权请联系删除。 图片网址:PPBC中国植物图像库——最大的植物分类图片库 一、柏木 …

windows上安装MySQL Server.

进入官网 MySQL 找到 下载,并点进入。 往下翻,找到社区下载,进入页面 选择 Mysql community Server 选择系统,下载 之后解压。 将解压文件夹下的bin路径添加到变量值中 配置初始化的my.ini文件 [mysqld] # 设置3306端口 port330…

Java中锁的深入理解

目录 对象头的理解 Monitor(锁) 锁类型 偏向锁 偏向锁的优化机制 轻量级锁 重量级锁 对象头的理解 在32位Java虚拟机中普通对象的对象头是占用8个字节,其中4个字节为Mark Word。用来存储对象的哈希值,对象创建后在JVM中的…

C++ 运算符重载详解

本篇内容来源于对c课堂上学习内容的记录 通过定义函数实现任意数据类型的运算 假设我们定义了一个复数类&#xff0c;想要实现两个复数的相加肯定不能直接使用“”运算符&#xff0c;我们可以通过自定义一个函数来实现这个功能&#xff1a; #include <iostream> using…

解决WPF项目xaml出现“正在等待IntelliSense完成”的问题

在WPF项目xaml里经常出现“正在等待IntelliSense完成”的场景&#xff0c;如下图&#xff1a; 解决办法 工具–选项

Asp.net MVC Api项目搭建

整个解决方案按照分层思想来划分不同功能模块&#xff0c;以提供User服务的Api为需求&#xff0c;各个层次的具体实现如下所示&#xff1a; 1、新建数据库User表 数据库使用SQLExpress版本&#xff0c;表的定义如下所示&#xff1a; CREATE TABLE [dbo].[User] ([Id] …

系列三、GC垃圾回收算法和垃圾收集器的关系?分别是什么请你谈谈

一、关系 GC算法&#xff08;引用计数法、复制算法、标记清除算法、标记整理算法&#xff09;是方法论&#xff0c;垃圾收集器是算法的落地实现。 二、4种主要垃圾收集器 4.1、串行垃圾收集器&#xff08;Serial&#xff09; 它为单线程环境设计&#xff0c;并且只使用一个线程…

机器学习赋予用户“超人”的能力来打开和控制虚拟现实中的工具

原创 | 文 BFT机器人 最近&#xff0c;剑桥的研究人员开发了一种虚拟现实应用程序&#xff0c;只需用户手部的移动即可打开和控制一系列3D建模工具。 来自剑桥大学的研究人员利用机器学习开发了“HotGestures”类似于许多桌面应用程序中使用的热键&#xff08;快捷键&#xff…

【C++】一文全解C++中的异常:标准库异常体系&自定义异常体系(含代码演示)

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.C语言传统的处理错误的方式二.C异常…

MVSNet论文笔记

MVSNet论文笔记 摘要1 引言2 相关基础2.1 多视图立体视觉重建&#xff08;MVS Reconstruction&#xff09;2.2 基于学习的立体视觉&#xff08;Learned Stereo&#xff09;2.3 基于学习的多视图的立体视觉&#xff08;Learned MVS&#xff09; Yao, Y., Luo, Z., Li, S., Fang,…

2024年csdn最新最全面的fiddler教程【1】

Fiddler简介 Fiddler是比较好用的web代理调试工具之一&#xff0c;它能记录并检查所有客户端与服务端的HTTP/HTTPS请求&#xff0c;能够设置断点&#xff0c;篡改及伪造Request/Response的数据&#xff0c;修改hosts&#xff0c;限制网速&#xff0c;http请求性能统计&#xff…