计算机网络——物理层-信道的极限容量(奈奎斯特公式、香农公式)

目录

介绍

奈氏准则

香农公式


介绍

信号在传输过程中,会受到各种因素的影响。

如图所示,这是一个数字信号。

当它通过实际的信道后,波形会产生失真;当失真不严重时,在输出端还可根据已失真的波形还原出发送的码元。

但当失真严重时,在输出端就很难判断这个信号在什么时候是1,和在什么时候是0。

信号波形失去了码元之间的清晰界限,这种现象叫做码间串扰。

产生失真的原因主要有:

  • 码元传输速率
  • 信号传输距离
  • 噪声干扰
  • 传输媒体质量等

奈氏准则

(奈奎斯特公式)

早在1924年,奈奎斯特就推导出了著名的奈氏准则,他给出了在假定的理想条件下,为了避免码间串扰,码元传输速率的上限。

  • 理想低通信道的最高码元传输速率 =  2W Baud = 2W 码元 / 秒
  • 理想带通信道的最高码元传输速率 =  W Baud = W 码元 / 秒

W:信道带宽(单位为 Hz)

Baud: 波特 ,即 码元 / 秒

码元传输速率又称为波特率、调制速率、波形速率或符号速率。它与比特率有一定的关系:

  • 当一个码元只携带1比特的信息量时,则波特率(码元 / 秒)与比特率(比特 / 秒)在数值上是相等的;
  • 当一个码元携带n比特的信息量时,则波特率转换成比特率时,数值要乘以n。

要提高信息的传输速率(比特率),就必须设法使每一个码元能够携带更多个比特的信息量。这需要采用多元制。

还记得我们之前介绍的调幅、调频以及调相这三种基本调制方法吗?

它们属于二元调制,只能产生两种不同的码元,也就是两种不同的基本波形。因此,每个码元只能携带1比特的信息量。

而混合调制属于多元调制,例如QAM16可以调制出16种不同的码元,因此,每个码元可以携带4比特的信息量。

需要说明的是:

实际的信道所能传输的最高码元速率要明显低于奈氏准则给出的这个上限值。

这是因为,奈氏准则是在假定的理想条件下推导出来的,他不考虑其他因素,例如传输距离、噪声干扰、传输媒体质量等。

仅从公式来看,只要采用更好的调制方法,让码元可以携带更多的比特,岂不是可以无限制的提高信息的传输速率吗?

答案是否定的。信道的极限信息传输速率,还要受限于实际的信号在信道中传输时的信噪比。

因为信道中的噪声也会影响接收端对码元的识别,并且噪声功率相对信号功率越大,影响就越大。

香农公式

1948年,香农用信息论的理论,推导出了带宽受限,且有高斯白噪声干扰的信道的极限信息传输速率。

具体公式如下所示:

c = W \times {log_{2}}^{(1+\frac{S}{N})}

其中c是信道的极限信息传输速率,单位是比特每秒;W是信道带宽,单位为赫兹;S是信道内所传送信号的平均功率;N是信道内的高斯噪声功率;S/N是信噪比,使用分贝作为度量单位。

信噪比(db) = 10 \times {log_{10}}^{\frac{S}{N}}\: \: (dB)

如下所示,从相同公式可以看出:信道带宽或信道中信道比越大,信息的极限传输速率就越大。

需要说明的是:

在实际信道上,能够达到的信息传输速率,要比该公式的极限传输速率低不少。

这是因为在实际信道中,信号还要受到其他一些损伤,例如各种脉冲干扰 。信号在传输中的衰减和失真等这些因素在香农公式中并未考虑。

综合来看,奈氏准则和香农公式在信道带宽一定的情况下,要想提高信息的传输速率,就必须采用多元制(更好的调制方法)和努力提高信道中的信噪比

  • 自从香农公式发表以后,各种新的信号处理和调制方法就不断出现,其目的都是为了尽可能地接近香农公式所给出的传输速率极限

END 


学习自:湖科大——计算机网络微课堂

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/196237.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#,数值计算——插值和外推,Laplace_interp的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Object for interpolating missing data in a matrix by solving Laplaces /// equation.Call constructor once, then solve one or more times /// </summary> …

计算两个向量的叉积numpy.cross()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 计算两个向量的叉积 numpy.cross() [太阳]选择题 请问代码中最后输出正确的是&#xff1f; import numpy as np a np.array([1, 2, 3]) b np.array([4, 5, 6]) c np.cross(a, b) pri…

iptables详解:常用模块的基本使用

目录 tcp扩展模块 multiport扩展模块 iprange扩展模块 connlimit模块 limit扩展模块 udp扩展模块 icmp扩展模块 state扩展模块 限制每分钟接收10个ICMP数据报文 允许10个数据报文快速通过&#xff0c;然后限制每分钟接收1个个ICMP数据报文 限制网络传输的带宽不可以…

【原创】WeChat Server搭建

功能 微信公众号的后端&#xff0c;为其他系统提供微信登录验证功能 源码地址 https://github.com/songquanpeng/wechat-server 创建MySQL数据库 宝塔\数据库\MySQL 添加数据库 数据库名&#xff1a;wechat_server 用户名&#xff1a;wechat_server 密码&#xff1a;fZNB…

【论文复现】QuestEval:《QuestEval: Summarization Asks for Fact-based Evaluation》

以下是复现论文《QuestEval: Summarization Asks for Fact-based Evaluation》&#xff08;NAACL 2021&#xff09;代码https://github.com/ThomasScialom/QuestEval/的流程记录&#xff1a; 在服务器上conda创建虚拟环境questeval&#xff08;python版本于readme保持一致&…

quinn源码解析:QUIC数据包是如何发送的

quinn源码解析&#xff1a;QUIC数据包是如何发送的 简介QUIC协议中的概念endpoint&#xff08;端点&#xff09;connection&#xff08;连接&#xff09;Stream&#xff08;流&#xff09;Frame (帧) 发包过程解析SendStream::write_allConnectionDriverEndpointDriver 简介 q…

拷贝对象时编译器的一些优化

在传参和传值返回的过程中&#xff0c;编译器会通过一些优化减少拷贝的次数。 class A { public:A():_a(1){cout << "A()" << endl;}A(const A& aa):_a(aa._a){cout << "A(const A& aa)" << endl;}A& operator(const …

项目自动化构建工具——make/Makefile

目录 一、概念 二、使用实例 三、原理 四、进度条程序 1、缓冲区问题 1、概念 2、\r和\n 2、代码编写 一、概念 一个工程中的源文件不计数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;makefile定义了一系列的规则来指定&#xff0c;哪些文件需要先…

【Java】线程池源码解析

目录 一、线程池介绍 1.1、什么是线程池 1.2、线程池的工作原理 二、Executor框架接口 2.1、JDK提供的原生线程池 2.2、类关系 三、线程池核心源码分析 3.1、关键属性 3.2、状态控制 3.3、线程池状态的跃迁 3.4、execute方法源码分析 3.5、addWorker方法源码分析 3…

Web实战:基于Django与Bootstrap的在线计算器

文章目录 写在前面实验目标实验内容1. 创建项目2. 导入框架3. 配置项目前端代码后端代码 4. 运行项目 注意事项写在后面 写在前面 本期内容&#xff1a;基于Django与Bootstrap的在线计算器 实验环境&#xff1a; vscodepython(3.11.4)django(4.2.7)bootstrap(3.4.1)jquery(3…

.Net中Redis的基本使用

前言 Redis可以用来存储、缓存和消息传递。它具有高性能、持久化、高可用性、扩展性和灵活性等特点&#xff0c;尤其适用于处理高并发业务和大量数据量的系统&#xff0c;它支持多种数据结构&#xff0c;如字符串、哈希表、列表、集合、有序集合等。 Redis的使用 安装包Ser…

leetcode面试经典150题——28 盛最多水的容器

题目&#xff1a;盛最多水的容器 描述&#xff1a; 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最…