【图像分类】【深度学习】【Pytorch版本】GoogLeNet(InceptionV4)模型算法详解

【图像分类】【深度学习】【Pytorch版本】GoogLeNet(InceptionV4)模型算法详解

文章目录

  • 【图像分类】【深度学习】【Pytorch版本】GoogLeNet(InceptionV4)模型算法详解
  • 前言
  • GoogLeNet(InceptionV4)讲解
    • Stem结构
    • Inception-A结构
    • Inception- B结构
    • Inception-C结构
    • redution-A结构
    • redution-B结构
    • GoogLeNet(InceptionV4)模型结构
  • GoogLeNet(InceptionV4) Pytorch代码
  • 完整代码
  • 总结


前言

GoogLeNet(InceptionV4)是由谷歌的Szegedy, Christian等人在《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning【AAAI-2017】》【论文地址】一文中提出的改进模型,InceptionV4保留了此前的Inception模块的核心思想基础上进行了改进和优化,InceptionV4的所有模块都采用了统一的设计原则,即采用Inception模块作为基本单元,通过堆叠纯Inception基本单元来实现复杂的网络结构。

因为InceptionV4、Inception-Resnet-v1和Inception-Resnet-v2同出自一篇论文,大部分读者对InceptionV4存在误解,认为它是Inception模块与残差学习的结合,其实InceptionV4没有使用残差学习的思想,它基本延续了Inception v2/v3的结构,只有Inception-Resnet-v1和Inception-Resnet-v2才是Inception模块与残差学习的结合产物。


GoogLeNet(InceptionV4)讲解

InceptionV4的三种基础Inception结构与InceptionV3【参考】中使用的结构基本一样,但InceptionV4引入了一些新的模块形状及其间的连接设计,在网络的早期阶段引入了“Stem”模块,用于快速降低特征图的分辨率,从而减少后续Inception模块的计算量。

Stem结构

stem结构实际上是替代了此前的Inception系列网络中Inception结构组之前的网络层,Stem中借鉴了InceptionV3中使用的并行结构、不对称卷积核结构,并使用1*1的卷积核用来降维和增加非线性,可以在保证信息损失足够小的情况下,使得计算量降低。

所有卷积中没有标记为V表示填充方式为"SAME Padding",输入和输出维度一致;标记为V表示填充方式为"VALID Padding",输出维度视具体情况而定。

Inception-A结构

对应InceptionV3中的结构Ⅰ。

Inception- B结构

对应InceptionV3中的结构Ⅱ,只是1×3卷积和3×1卷积变成了1×7卷积和7×1卷积。

Inception-C结构

对应InceptionV3中的结构Ⅲ,只是3×3卷积变成了1×3卷积和3×1卷积的串联结构。

redution-A结构

对应InceptionV3中的特殊结构。

k和l表示卷积个数,不同网络结构的redution-A结构k和l是不同的,Inception-ResNet会在其他博文中介绍。

redution-B结构

采用并行、不对称卷积和1*1的卷积来降低计算量。

GoogLeNet(InceptionV4)模型结构

下图是原论文给出的关于 GoogLeNet(InceptionV4)模型结构的详细示意图:

GoogLeNet(InceptionV4)在图像分类中分为两部分:backbone部分: 主要由InceptionV4模块、Stem模块和池化层(汇聚层)组成,分类器部分:由全连接层组成。
InceptionV4三种Inception模块的个数分别为4、7、3个,而InceptionV3中则为3、5、2个,因此InceptionV4的层次更深、结构更复杂,feature map更多。为了降低计算量,在Inception-A和Inception-B后面分别添加了Reduction-A和Reduction-B的结构,用来降低计算量。


GoogLeNet(InceptionV4) Pytorch代码

卷积层组: 卷积层+BN层+激活函数

# 卷积组: Conv2d+BN+ReLU
class BasicConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)self.bn = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)def forward(self, x):x = self.conv(x)x = self.bn(x)x = self.relu(x)return x

Stem模块: 卷积层组+池化层

# Stem:BasicConv2d+MaxPool2d
class Stem(nn.Module):def __init__(self, in_channels, out_channels):super(Stem, self).__init__()# conv3*3(32 stride2 valid)self.conv1 = BasicConv2d(in_channels, 32, kernel_size=3, stride=2)# conv3*3(32 valid)self.conv2 = BasicConv2d(32, 32, kernel_size=3)# conv3*3(64)self.conv3 = BasicConv2d(32, 64, kernel_size=3, padding=1)# maxpool3*3(stride2 valid) & conv3*3(96 stride2 valid)self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2)self.conv4 = BasicConv2d(64, 96, kernel_size=3, stride=2)# conv1*1(64)+conv3*3(96 valid)self.conv5_1_1 = BasicConv2d(160, 64, kernel_size=1)self.conv5_1_2 = BasicConv2d(64, 96, kernel_size=3)# conv1*1(64)+conv7*1(64)+conv1*7(64)+conv3*3(96 valid)self.conv5_2_1 = BasicConv2d(160, 64, kernel_size=1)self.conv5_2_2 = BasicConv2d(64, 64, kernel_size=(7, 1), padding=(3, 0))self.conv5_2_3 = BasicConv2d(64, 64, kernel_size=(1, 7), padding=(0, 3))self.conv5_2_4 = BasicConv2d(64, 96, kernel_size=3)# conv3*3(192 valid) & maxpool3*3(stride2 valid)self.conv6 = BasicConv2d(192, 192, kernel_size=3, stride=2)self.maxpool6 = nn.MaxPool2d(kernel_size=3, stride=2)def forward(self, x):x1_1 = self.maxpool4(self.conv3(self.conv2(self.conv1(x))))x1_2 = self.conv4(self.conv3(self.conv2(self.conv1(x))))x1 = torch.cat([x1_1, x1_2], 1)x2_1 = self.conv5_1_2(self.conv5_1_1(x1))x2_2 = self.conv5_2_4(self.conv5_2_3(self.conv5_2_2(self.conv5_2_1(y1))))x2 = torch.cat([x2_1, x2_2], 1)x3_1 = self.conv6(x2)x3_2 = self.maxpool6(x2)x3 = torch.cat([x3_1, x3_2], 1)return x3

Inception-A模块: 卷积层组+池化层

# InceptionV4A:BasicConv2d+MaxPool2d
class InceptionV4A(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2, pool_proj):super(InceptionV4A, self).__init__()# conv1*1(96)self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# conv1*1(64)+conv3*3(96)self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小)# conv1*1(64)+conv3*3(96)+conv3*3(96)self.branch3 = nn.Sequential(BasicConv2d(in_channels, ch3x3redX2, kernel_size=1),BasicConv2d(ch3x3redX2, ch3x3X2, kernel_size=3, padding=1),BasicConv2d(ch3x3X2, ch3x3X2, kernel_size=3, padding=1)         # 保证输出大小等于输入大小)# avgpool + conv1*1(96)self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)# 拼接outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)

Inception-B模块: 卷积层组+池化层

# InceptionV4B:BasicConv2d+MaxPool2d
class InceptionV4B(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3_1, ch3x3_2, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, pool_proj):super(InceptionV4B, self).__init__()# conv1*1(384)self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# conv1*1(192)+conv1*7(224)+conv1*7(256)self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3_1, kernel_size=[1, 7], padding=[0, 3]),BasicConv2d(ch3x3_1, ch3x3_2, kernel_size=[7, 1], padding=[3, 0])   # 保证输出大小等于输入大小)# conv1*1(192)+conv1*7(192)+conv7*1(224)+conv1*7(224)+conv7*1(256)self.branch3 = nn.Sequential(BasicConv2d(in_channels, ch3x3redX2, kernel_size=1),BasicConv2d(ch3x3redX2, ch3x3redX2, kernel_size=[1, 7], padding=[0, 3]),BasicConv2d(ch3x3redX2, ch3x3X2_1, kernel_size=[7, 1], padding=[3, 0]),BasicConv2d(ch3x3X2_1, ch3x3X2_1, kernel_size=[1, 7], padding=[0, 3]),BasicConv2d(ch3x3X2_1, ch3x3X2_2, kernel_size=[7, 1], padding=[3, 0])  # 保证输出大小等于输入大小)# avgpool+conv1*1(128)self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)# 拼接outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)

Inception-C模块: 卷积层组+池化层

# InceptionV4C:BasicConv2d+MaxPool2d
class InceptionV4C(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, ch3x3X2_3,pool_proj):super(InceptionV4C, self).__init__()# conv1*1(256)self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# conv1*1(384)+conv1*3(256) & conv3*1(256)self.branch2_0 = BasicConv2d(in_channels, ch3x3red, kernel_size=1)self.branch2_1 = BasicConv2d(ch3x3red, ch3x3, kernel_size=[1, 3], padding=[0, 1])self.branch2_2 = BasicConv2d(ch3x3red, ch3x3, kernel_size=[3, 1], padding=[1, 0])# conv1*1(384)+conv1*3(448)+conv3*1(512)+conv3*1(256) & conv7*1(256)self.branch3_0 = nn.Sequential(BasicConv2d(in_channels, ch3x3redX2, kernel_size=1),BasicConv2d(ch3x3redX2, ch3x3X2_1, kernel_size=[1, 3], padding=[0, 1]),BasicConv2d(ch3x3X2_1, ch3x3X2_2, kernel_size=[3, 1], padding=[1, 0]),)self.branch3_1 = BasicConv2d(ch3x3X2_2, ch3x3X2_3, kernel_size=[1, 3], padding=[0, 1])self.branch3_2 = BasicConv2d(ch3x3X2_2, ch3x3X2_3, kernel_size=[3, 1], padding=[1, 0])# avgpool+conv1*1(256)self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):branch1 = self.branch1(x)branch2_0 = self.branch2_0(x)branch2 = torch.cat([self.branch2_1(branch2_0), self.branch2_2(branch2_0)], dim=1)branch3_0 = self.branch3_0(x)branch3 = torch.cat([self.branch3_1(branch3_0), self.branch3_2(branch3_0)], dim=1)branch4 = self.branch4(x)# 拼接outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)

redutionA模块: 卷积层组+池化层

# redutionA:BasicConv2d+MaxPool2d
class redutionA(nn.Module):def __init__(self, in_channels, k, l, m, n):super(redutionA, self).__init__()# conv3*3(n stride2 valid)self.branch1 = nn.Sequential(BasicConv2d(in_channels, n, kernel_size=3, stride=2),)# conv1*1(k)+conv3*3(l)+conv3*3(m stride2 valid)self.branch2 = nn.Sequential(BasicConv2d(in_channels, k, kernel_size=1),BasicConv2d(k, l, kernel_size=3, padding=1),BasicConv2d(l, m, kernel_size=3, stride=2))# maxpool3*3(stride2 valid)self.branch3 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=2))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)# 拼接outputs = [branch1,branch2, branch3]return torch.cat(outputs, 1)

redutionB模块: 卷积层组+池化层

# redutionB:BasicConv2d+MaxPool2d
class redutionB(nn.Module):def __init__(self, in_channels, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2):super(redutionB, self).__init__()# conv1*1(192)+conv3*3(192 stride2 valid)self.branch1 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, stride=2))# conv1*1(256)+conv1*7(256)+conv7*1(320)+conv3*3(320 stride2 valid)self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3redX2, kernel_size=1),BasicConv2d(ch3x3redX2, ch3x3redX2, kernel_size=(1, 7), padding=(0, 3)),# 保证输出大小等于输入大小BasicConv2d(ch3x3redX2, ch3x3X2, kernel_size=(7, 1), padding=(3, 0)),BasicConv2d(ch3x3X2, ch3x3X2, kernel_size=3, stride=2))#  maxpool3*3(stride2 valid)self.branch3 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=2))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)# 拼接outputs = [branch1,branch2, branch3]return torch.cat(outputs, 1)

完整代码

GoogLeNet(InceptionV4)的输入图像尺寸是299×299

import torch.nn as nn
import torch
from torchsummary import summaryclass GoogLeNetV4(nn.Module):def __init__(self, num_classes=1000, init_weights=False):super(GoogLeNetV4, self).__init__()# stem模块self.stem = Stem(3, 384)# InceptionA模块self.inceptionA = InceptionV4A(384, 96, 64, 96, 64, 96, 96)# RedutionA模块self.RedutionA = redutionA(384, 192, 224, 256, 384)# InceptionB模块self.InceptionB = InceptionV4B(1024, 384, 192, 224, 256, 192, 224,256,128)# RedutionB模块self.RedutionB = redutionB(1024,     192, 192, 256, 320)# InceptionC模块self.InceptionC = InceptionV4C(1536, 256, 384, 256, 384, 448, 512, 256,256)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.dropout = nn.Dropout(0.8)self.fc = nn.Linear(1536, num_classes)if init_weights:self._initialize_weights()def forward(self, x):# Stem Module# N x 3 x 299 x 299x = self.stem(x)# InceptionA Module * 4# N x 384 x 26 x 26x = self.inceptionA(self.inceptionA(self.inceptionA(self.inceptionA(x))))# ReductionA Module# N x 384 x 26 x 26x = self.RedutionA(x)# InceptionB Module * 7# N x 1024 x 12 x 12x = self.InceptionB(self.InceptionB(self.InceptionB(self.InceptionB(self.InceptionB(self.InceptionB(self.InceptionB(x)))))))# ReductionB Module# N x 1024 x 12 x 12x = self.RedutionB(x)# InceptionC Module * 3# N x 1536 x 5 x 5x = self.InceptionC(self.InceptionC(self.InceptionC(x)))# Average Pooling# N x 1536 x 5 x 5x = self.avgpool(x)# N x 1536 x 1 x 1x = x.view(x.size(0), -1)# Dropout# N x 1536x = self.dropout(x)# Linear(Softmax)# N x 1536x = self.fc(x)# N x 1000return x# 对模型的权重进行初始化操作def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.normal_(m.weight, 0, 0.01)nn.init.constant_(m.bias, 0)# InceptionV4A:BasicConv2d+MaxPool2d
class InceptionV4A(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2, pool_proj):super(InceptionV4A, self).__init__()# conv1*1(96)self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# conv1*1(64)+conv3*3(96)self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小)# conv1*1(64)+conv3*3(96)+conv3*3(96)self.branch3 = nn.Sequential(BasicConv2d(in_channels, ch3x3redX2, kernel_size=1),BasicConv2d(ch3x3redX2, ch3x3X2, kernel_size=3, padding=1),BasicConv2d(ch3x3X2, ch3x3X2, kernel_size=3, padding=1)         # 保证输出大小等于输入大小)# avgpool+conv1*1(96)self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)# 拼接outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)# InceptionV4B:BasicConv2d+MaxPool2d
class InceptionV4B(nn.Module):def __init__(self, in_channels, ch1x1, ch_red, ch_1, ch_2, ch_redX2, ch_X2_1, ch_X2_2, pool_proj):super(InceptionV4B, self).__init__()# conv1*1(384)self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# conv1*1(192)+conv1*7(224)+conv1*7(256)self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch_red, kernel_size=1),BasicConv2d(ch_red, ch_1, kernel_size=[1, 7], padding=[0, 3]),BasicConv2d(ch_1, ch_2, kernel_size=[7, 1], padding=[3, 0])   # 保证输出大小等于输入大小)# conv1*1(192)+conv1*7(192)+conv7*1(224)+conv1*7(224)+conv7*1(256)self.branch3 = nn.Sequential(BasicConv2d(in_channels, ch_redX2, kernel_size=1),BasicConv2d(ch_redX2, ch_redX2, kernel_size=[1, 7], padding=[0, 3]),BasicConv2d(ch_redX2, ch_X2_1, kernel_size=[7, 1], padding=[3, 0]),BasicConv2d(ch_X2_1, ch_X2_1, kernel_size=[1, 7], padding=[0, 3]),BasicConv2d(ch_X2_1, ch_X2_2, kernel_size=[7, 1], padding=[3, 0])  # 保证输出大小等于输入大小)# avgpool+conv1*1(128)self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)# 拼接outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)# InceptionV4C:BasicConv2d+MaxPool2d
class InceptionV4C(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, ch3x3X2_3,pool_proj):super(InceptionV4C, self).__init__()# conv1*1(256)self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)# conv1*1(384)+conv1*3(256) & conv3*1(256)self.branch2_0 = BasicConv2d(in_channels, ch3x3red, kernel_size=1)self.branch2_1 = BasicConv2d(ch3x3red, ch3x3, kernel_size=[1, 3], padding=[0, 1])self.branch2_2 = BasicConv2d(ch3x3red, ch3x3, kernel_size=[3, 1], padding=[1, 0])# conv1*1(384)+conv1*3(448)+conv3*1(512)+conv3*1(256) & conv7*1(256)self.branch3_0 = nn.Sequential(BasicConv2d(in_channels, ch3x3redX2, kernel_size=1),BasicConv2d(ch3x3redX2, ch3x3X2_1, kernel_size=[1, 3], padding=[0, 1]),BasicConv2d(ch3x3X2_1, ch3x3X2_2, kernel_size=[3, 1], padding=[1, 0]),)self.branch3_1 = BasicConv2d(ch3x3X2_2, ch3x3X2_3, kernel_size=[1, 3], padding=[0, 1])self.branch3_2 = BasicConv2d(ch3x3X2_2, ch3x3X2_3, kernel_size=[3, 1], padding=[1, 0])# avgpool+conv1*1(256)self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):branch1 = self.branch1(x)branch2_0 = self.branch2_0(x)branch2 = torch.cat([self.branch2_1(branch2_0), self.branch2_2(branch2_0)], dim=1)branch3_0 = self.branch3_0(x)branch3 = torch.cat([self.branch3_1(branch3_0), self.branch3_2(branch3_0)], dim=1)branch4 = self.branch4(x)# 拼接outputs = [branch1, branch2, branch3, branch4]return torch.cat(outputs, 1)# redutionA:BasicConv2d+MaxPool2d
class redutionA(nn.Module):def __init__(self, in_channels, k, l, m, n):super(redutionA, self).__init__()# conv3*3(n stride2 valid)self.branch1 = nn.Sequential(BasicConv2d(in_channels, n, kernel_size=3, stride=2),)# conv1*1(k)+conv3*3(l)+conv3*3(m stride2 valid)self.branch2 = nn.Sequential(BasicConv2d(in_channels, k, kernel_size=1),BasicConv2d(k, l, kernel_size=3, padding=1),BasicConv2d(l, m, kernel_size=3, stride=2))# maxpool3*3(stride2 valid)self.branch3 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=2))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)# 拼接outputs = [branch1,branch2, branch3]return torch.cat(outputs, 1)# redutionB:BasicConv2d+MaxPool2d
class redutionB(nn.Module):def __init__(self, in_channels, ch3x3red, ch3x3, ch_redX2, ch_X2):super(redutionB, self).__init__()# conv1*1(192)+conv3*3(192 stride2 valid)self.branch1 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, stride=2))# conv1*1(256)+conv1*7(256)+conv7*1(320)+conv3*3(320 stride2 valid)self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch_redX2, kernel_size=1),BasicConv2d(ch_redX2, ch_redX2, kernel_size=(1, 7), padding=(0, 3)),# 保证输出大小等于输入大小BasicConv2d(ch_redX2, ch_X2, kernel_size=(7, 1), padding=(3, 0)),BasicConv2d(ch_X2, ch_X2, kernel_size=3, stride=2))#  maxpool3*3(stride2 valid)self.branch3 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=2))def forward(self, x):branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)# 拼接outputs = [branch1,branch2, branch3]return torch.cat(outputs, 1)# Stem:BasicConv2d+MaxPool2d
class Stem(nn.Module):def __init__(self, in_channels, out_channels):super(Stem, self).__init__()# conv3*3(32 stride2 valid)self.conv1 = BasicConv2d(in_channels, 32, kernel_size=3, stride=2)# conv3*3(32 valid)self.conv2 = BasicConv2d(32, 32, kernel_size=3)# conv3*3(64)self.conv3 = BasicConv2d(32, 64, kernel_size=3, padding=1)# maxpool3*3(stride2 valid) & conv3*3(96 stride2 valid)self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2)self.conv4 = BasicConv2d(64, 96, kernel_size=3, stride=2)# conv1*1(64)+conv3*3(96 valid)self.conv5_1_1 = BasicConv2d(160, 64, kernel_size=1)self.conv5_1_2 = BasicConv2d(64, 96, kernel_size=3)# conv1*1(64)+conv7*1(64)+conv1*7(64)+conv3*3(96 valid)self.conv5_2_1 = BasicConv2d(160, 64, kernel_size=1)self.conv5_2_2 = BasicConv2d(64, 64, kernel_size=(7, 1), padding=(3, 0))self.conv5_2_3 = BasicConv2d(64, 64, kernel_size=(1, 7), padding=(0, 3))self.conv5_2_4 = BasicConv2d(64, 96, kernel_size=3)# conv3*3(192 valid) & maxpool3*3(stride2 valid)self.conv6 = BasicConv2d(192, 192, kernel_size=3, stride=2)self.maxpool6 = nn.MaxPool2d(kernel_size=3, stride=2)def forward(self, x):x1_1 = self.maxpool4(self.conv3(self.conv2(self.conv1(x))))x1_2 = self.conv4(self.conv3(self.conv2(self.conv1(x))))x1 = torch.cat([x1_1, x1_2], 1)x2_1 = self.conv5_1_2(self.conv5_1_1(x1))x2_2 = self.conv5_2_4(self.conv5_2_3(self.conv5_2_2(self.conv5_2_1(x1))))x2 = torch.cat([x2_1, x2_2], 1)x3_1 = self.conv6(x2)x3_2 = self.maxpool6(x2)x3 = torch.cat([x3_1, x3_2], 1)return x3# 卷积组: Conv2d+BN+ReLU
class BasicConv2d(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)self.bn = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)def forward(self, x):x = self.conv(x)x = self.bn(x)x = self.relu(x)return xif __name__ == '__main__':device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = GoogLeNetV4().to(device)summary(model, input_size=(3, 229, 229))

summary可以打印网络结构和参数,方便查看搭建好的网络结构。


总结

尽可能简单、详细的介绍了InceptionV4的改进方案,讲解了GoogLeNet(InceptionV4)模型的结构和pytorch代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/197596.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SystemV共享内存

一、原理 申请:与共享库类似,OS先在共享区开辟/申请一段共享内存,然后通过页表映射,挂接到进程地址空间,返回这块内存的首地址,使得不同进程能访问同一份资源。 释放:去关联释放共享内存 一个进…

海康威视综合安防管理平台任意文件上传

系统介绍 HIKVISION iSecure Center综合安防管理平台是一套“集成化”、“智能化”的平台,通过接入视频监控、一卡通、停车场、报警检测等系统的设备,获取边缘节点数据,实现安防信息化集成与联动,公众号:web安全工具库…

回归测试?

1. 什么是回归测试(Regression Testing) 回归测试是一个系统的质量控制过程,用于验证最近对软件的更改或更新是否无意中引入了新错误或对以前的功能方面产生了负面影响(比如你在家中安装了新的空调系统,发现虽然新的空…

分形简单版

我的代码&#xff1a; #include<bits/stdc.h> using namespace std; const int N1000; int n; char s[N][N]; void work(int x) {if(x1) {s[0][0]*;return;}work(x-1);for(int i0;i<(1<<x-2);i)for(int j(1<<x-2);j<(1<<x-1);j) s[i][j]s[i][j-(…

查询数据库DQL

DQL 查询基本语法 -- DQL :基本语法; -- 1查询指定的字段 name entrydate 并返回select name , entrydate from tb_emp;-- 2 查询 所有字段 并返回select id, username, password, name, gender, image, job, entrydate, create_time, update_time from tb_emp;-- 2 查询…

【前端学java】复习巩固-Java中的对象比较(14)

往期回顾&#xff1a; 【前端学java】JAVA开发的依赖安装与环境配置 &#xff08;0&#xff09;【前端学 java】java的基础语法&#xff08;1&#xff09;【前端学java】JAVA中的packge与import&#xff08;2&#xff09;【前端学java】面向对象编程基础-类的使用 &#xff08…

ResizeObserver观察元素宽度的变化

ResizeObserver观察元素宽度的变化 ResizeObserver观察元素宽度的变化 ResizeObserver观察元素宽度的变化 ResizeObserver 构造函数创建一个新的 ResizeObserver 对象&#xff0c;它可以用于监听 Element 内容盒或边框盒或者 SVGElement 边界尺寸的大小。查看详细说明 案例 &l…

世微 电动车摩托车灯 5-80V 1.2A 一切二降压恒流驱动器AP2915

产品描述 AP2915 是一款可以一路灯串切换两路灯串的降压恒流驱动器,高效率、外围简单、内置功率管&#xff0c;适用于5-80V 输入的高精度降压 LED 恒流驱动芯片。内置功率管输出最大功率可达 12W&#xff0c;最大电流 1.2A。AP2915 一路灯亮切换两路灯亮&#xff0c;其中一路灯…

HarmonyOS脚手架:快捷实现ArkTs中json转对象

前言 在上篇《HarmonyOS开发&#xff1a;UI开展前的阶段总结》中提到了未来的规划&#xff0c;既能让大家学会鸿蒙开发&#xff0c;也能让大家在以后的开发中如虎添翼&#xff0c;最终决定&#xff0c;便以脚手架为产出物&#xff0c;结合实际的业务需求&#xff0c;进行相关技…

【数据科学】Python开源库数据集大全(附代码)

目录 工具库介绍scikit-learnstatsmodelsSeabornPyTorchTensorFlow DatasetsKerasNLTK参考链接 工具库介绍 为了使初学者更容易入门&#xff0c;许多开源库提供了丰富而标准化的示例数据集&#xff0c;其中包括scikit-learn、NLTK、TensorFlow Datasets、Keras Datasets、Stat…

JDY蓝牙注意事项

波特率设置&#xff1a;9600&#xff0c;不接受115200&#xff0c;或者38400. 不同于WiFi测试&#xff0c;jdy蓝牙不接受AT"指令&#xff0c;可以使用“ATVERSION"指令测试 安信可公司的那个蓝牙指令在这里没有用&#xff0c;不知道是不是生产的公司不一样

Azure Machine Learning - 什么是 Azure AI 搜索?

Azure AI 搜索&#xff08;以前称为“Azure 认知搜索”&#xff09;在传统和对话式搜索应用程序中针对用户拥有的内容提供大规模的安全信息检索。 关注TechLead&#xff0c;分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验&#xff0c;同济本复旦…