1 论文解读
paper:VIT
1.1 VIT模型架构如下图所示:
- 图片原始输入维度 H * W * C
- 在H和W按像素P切分,则H 、W可分割为 NPP, N=HW/(PP),N为输入transform序列的长度。
- x ∈ R H ∗ W ∗ C = > x ∈ R N ∗ P 2 ∗ C x \in R^{H*W*C} => x\in R^{N*P^2*C} x∈RH∗W∗C=>x∈RN∗P2∗C
- 固定每层的维度D不变,The Transformer uses constant latent vector size D through all of its layers, so we flatten the patches and map to D dimensions with a trainable linear projection
- 在N序列长度的基础上,增加一个Class token,类似bert用于分类任务学习
- 增加位置信息,使用拉长后的一维数据作为位置编码信息。(使用图片的二维坐标位置,模型效果没有明显改善)
VIT模型公式
输入 x ∈ N ∗ p 2 ∗ C 输入 x \in N*p^2*C 输入x∈N∗p2∗C
x p 1 ∈ P 2 ∗ C x_p^1 \in P^2*C xp1∈P2∗C
E ∈ ( P 2 ∗ C ) ∗ D E \in (P^2*C) *D E∈(P2∗C)∗D
其中E对序列N中的每一个xi都是一样的,z0的维度为(N+1)* D
公式(2)MSA(多头注意力)不改变z0的维度
公式(3)经过MLP层后与原始z相加,类似残差网络
公式(4)只取z的第一个值(之前在第一个位置手动添加了一个class标识)用于分类任务,进行模型学习
2 代码实现
2.1 embedding 层
- 模型输入x.shape=[16,3,224,224] #16为batch_size
- x输入patch_embedding 后,shape =[16,768,14,14]
- 将上面的patch_embedding最后两位(H,W)拉平后,与channel调换位置,shape=[16,196,768]
- 然后与手动的cls_token拼接 shape=[16,197,768]
- 加入位置信息后,即可得到embdeeing的输出,shape=[16,197,768]
self.patch_embeddings = Conv2d(in_channels=in_channels,out_channels=config.hidden_size,kernel_size=16,stride=16)
- cls_token shape=[1,1,768]
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
#备注:n_patches=14*14 ,config.hidden_size=768
self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size))
2.2 block层
- 输入为Embedding层输入的x ;shape=[16,197,768]
- 通过layer_norm层,,shape不变
- 通过attn层,构建多头注意力,query,key,value的shape都为shape=[16,12,197,64]
- 加上原始的x,纪委multi-head的输出,shape=[16,197,768]
- 再经过layer_norm和全连接层,加上上层x,即为block的输出,shape=[16,197,768]
layer_norm层
self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6)
2.3Encoder层
经过L个Block层,输出结果即为encoder层,shape=[16,197,768]
2.4 模型输出
- transform最后的输出层为 shape=[16,197,768]
- 取序列197的第一个作为输出x,x shape=[16,768]
- 输出x,经过全连接层,shape=[16,num_class]
- 模型loss为交叉熵损失
3 transformer 结构
(embeddings): Embeddings((patch_embeddings): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))(dropout): Dropout(p=0.1, inplace=False))(encoder): Encoder((layer): ModuleList((0): Block((attention_norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)(ffn_norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)(ffn): Mlp((fc1): Linear(in_features=768, out_features=3072, bias=True)(fc2): Linear(in_features=3072, out_features=768, bias=True)(dropout): Dropout(p=0.1, inplace=False))(attn): Attention((query): Linear(in_features=768, out_features=768, bias=True)(key): Linear(in_features=768, out_features=768, bias=True)(value): Linear(in_features=768, out_features=768, bias=True)(out): Linear(in_features=768, out_features=768, bias=True)(attn_dropout): Dropout(p=0.0, inplace=False)(proj_dropout): Dropout(p=0.0, inplace=False)(softmax): Softmax(dim=-1)))
... 省略10层Block(11): Block((attention_norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)(ffn_norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)(ffn): Mlp((fc1): Linear(in_features=768, out_features=3072, bias=True)(fc2): Linear(in_features=3072, out_features=768, bias=True)(dropout): Dropout(p=0.1, inplace=False))(attn): Attention((query): Linear(in_features=768, out_features=768, bias=True)(key): Linear(in_features=768, out_features=768, bias=True)(value): Linear(in_features=768, out_features=768, bias=True)(out): Linear(in_features=768, out_features=768, bias=True)(attn_dropout): Dropout(p=0.0, inplace=False)(proj_dropout): Dropout(p=0.0, inplace=False)(softmax): Softmax(dim=-1))))(encoder_norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True))
)
3 代码总览
3.1 Embedding类
class Embeddings(nn.Module):"""Construct the embeddings from patch, position embeddings."""def __init__(self, config, img_size, in_channels=3):super(Embeddings, self).__init__()self.hybrid = Noneimg_size = _pair(img_size)if config.patches.get("grid") is not None:grid_size = config.patches["grid"]patch_size = (img_size[0] // 16 // grid_size[0], img_size[1] // 16 // grid_size[1])n_patches = (img_size[0] // 16) * (img_size[1] // 16)self.hybrid = Trueelse:patch_size = _pair(config.patches["size"])n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])self.hybrid = Falseif self.hybrid:self.hybrid_model = ResNetV2(block_units=config.resnet.num_layers,width_factor=config.resnet.width_factor)in_channels = self.hybrid_model.width * 16self.patch_embeddings = Conv2d(in_channels=in_channels,out_channels=config.hidden_size,kernel_size=patch_size,stride=patch_size)self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size))self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))self.dropout = Dropout(config.transformer["dropout_rate"])def forward(self, x):print(x.shape)B = x.shape[0]cls_tokens = self.cls_token.expand(B, -1, -1)print(cls_tokens.shape)if self.hybrid:x = self.hybrid_model(x)x = self.patch_embeddings(x)print(x.shape)x = x.flatten(2)print(x.shape)x = x.transpose(-1, -2)print(x.shape)x = torch.cat((cls_tokens, x), dim=1)print(x.shape)embeddings = x + self.position_embeddingsprint(embeddings.shape)embeddings = self.dropout(embeddings)print(embeddings.shape)return embeddings
3.2 Block层
class Block(nn.Module):
def init(self, config, vis):
super(Block, self).init()
self.hidden_size = config.hidden_size
self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6)
self.ffn_norm = LayerNorm(config.hidden_size, eps=1e-6)
self.ffn = Mlp(config)
self.attn = Attention(config, vis)
def forward(self, x):print(x.shape)h = xx = self.attention_norm(x)print(x.shape)x, weights = self.attn(x)x = x + hprint(x.shape)h = xx = self.ffn_norm(x)print(x.shape)x = self.ffn(x)print(x.shape)x = x + hprint(x.shape)return x, weights
3 encoder层
class Encoder(nn.Module):def __init__(self, config, vis):super(Encoder, self).__init__()self.vis = visself.layer = nn.ModuleList()self.encoder_norm = LayerNorm(config.hidden_size, eps=1e-6)for _ in range(config.transformer["num_layers"]):layer = Block(config, vis)self.layer.append(copy.deepcopy(layer))def forward(self, hidden_states):print(hidden_states.shape)attn_weights = []for layer_block in self.layer:hidden_states, weights = layer_block(hidden_states)if self.vis:attn_weights.append(weights)encoded = self.encoder_norm(hidden_states)return encoded, attn_weights
attention 层
class Attention(nn.Module):def __init__(self, config, vis):super(Attention, self).__init__()self.vis = visself.num_attention_heads = config.transformer["num_heads"]self.attention_head_size = int(config.hidden_size / self.num_attention_heads)self.all_head_size = self.num_attention_heads * self.attention_head_sizeself.query = Linear(config.hidden_size, self.all_head_size)self.key = Linear(config.hidden_size, self.all_head_size)self.value = Linear(config.hidden_size, self.all_head_size)self.out = Linear(config.hidden_size, config.hidden_size)self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"])self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"])self.softmax = Softmax(dim=-1)def transpose_for_scores(self, x):new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)print(new_x_shape)x = x.view(*new_x_shape)print(x.shape)print(x.permute(0, 2, 1, 3).shape)return x.permute(0, 2, 1, 3)def forward(self, hidden_states):print(hidden_states.shape)mixed_query_layer = self.query(hidden_states)print(mixed_query_layer.shape)mixed_key_layer = self.key(hidden_states)print(mixed_key_layer.shape)mixed_value_layer = self.value(hidden_states)print(mixed_value_layer.shape)query_layer = self.transpose_for_scores(mixed_query_layer)print(query_layer.shape)key_layer = self.transpose_for_scores(mixed_key_layer)print(key_layer.shape)value_layer = self.transpose_for_scores(mixed_value_layer)print(value_layer.shape)attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))print(attention_scores.shape)attention_scores = attention_scores / math.sqrt(self.attention_head_size)print(attention_scores.shape)attention_probs = self.softmax(attention_scores)print(attention_probs.shape)weights = attention_probs if self.vis else Noneattention_probs = self.attn_dropout(attention_probs)print(attention_probs.shape)context_layer = torch.matmul(attention_probs, value_layer)print(context_layer.shape)context_layer = context_layer.permute(0, 2, 1, 3).contiguous()print(context_layer.shape)new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)context_layer = context_layer.view(*new_context_layer_shape)print(context_layer.shape)attention_output = self.out(context_layer)print(attention_output.shape)attention_output = self.proj_dropout(attention_output)print(attention_output.shape)return attention_output, weights