Linux C IO复用

IO复用

  • 概述
  • IO模型
    • 阻塞式IO
    • 非阻塞式IO
    • IO复用
      • select、poll、epoll异同
    • 信号驱动式IO
    • 异步IO
  • select函数
    • select示例代码
  • poll函数
    • poll示例代码
  • epoll函数
    • 创建  epoll_create
    • 注册、修改、删除  epoll_ctl
    • 轮询 I/O 事件的发生  epoll_wait
    • epoll示例代码
  • 基于TCP和epoll在线多人聊天室服务器例子

概述

  什么是IO复用呢?I/O复用(I/O multiplexing),指的是通过一个支持同时感知多个描述符的函数系统调用,阻塞在这个系统调用上,等待某一个或者几个描述符准备就绪,就返回可读条件。
  IO多路复用解决了什么问题呢?当多个客户端与服务器通信时,若服务器阻塞在其中一个客户的read(sockfd1,…),当另一个客户数据到达sockfd2时,服务器无法及时处理,此时需要用到IO多路复用。即同时监听n个客户,当其中有一个发来消息时就从select的阻塞中返回,然后调用read读取收到消息的sockfd,然后又循环回select阻塞。这样就解决了阻塞在一个消息而无法处理其它的。即用来解决对多个I/O监听时,一个I/O阻塞影响其他I/O的问题。
  这时候大家可能会想到线程和进程也能做到这样的效果啊(基于tcp多线程在线聊天室例子)?但是,CPU切换进程和线程的成本是很高的,这也正是IO复用的优点,可以做到用更少的资源完成更多的事

IO模型

在这里插入图片描述

阻塞式IO

  这种类型的IO会阻塞等待到有输入。这类IO大部分时间处于睡眠态、阻塞态、挂起态。优点是不占用 CPU 宝贵的时间片,但是同一时刻只能处理一个操作、效率比较低。
  如何理解呢?就像你在家里睡觉,等着你的外卖送到,送到了给你打电话你才起床去拿外卖。如果一次性到了很多外卖,你也只能一个电话一个电话去接听,然后挨着拿。
  应用场景多为多进程、多线程的TCP 并发服务器、客户端。

非阻塞式IO

  该种类型的IO需要程序轮询检测输入,如果有输入就调用IO进行读取数据。优点是提高了程序的执行效率,但是需要占用更多的 CPU 和系统资源,使得 CPU 负荷增高。
  我们还举外卖的例子。这种情况就像你非常饿,一直顶着配送地图,一分钟刷新一次地图,看看到了没,到了你就立即下楼去拿,拿完了继续刷新地图看看别的还有多久到。

IO复用

  这类IO采用阻塞式IO+组长机制。多路IO共用一个同步阻塞接口,任意IO可操作都可激活IO操作。它能同时等待多个文件描述符,而这些文件描述符其中的任意一个进入读就绪状态,函数就可以返回。
  IO复用包含了select、poll和epoll。其中select相当于你家楼下放外卖的桌子,你得自己挨个外卖看一遍,直达找到你的外卖。而epoll像外卖柜,你只要看一下手机就知道你的外卖在哪个柜子里面。

select、poll、epoll异同

相同之处:
1 . 都可以用于监听多个文件描述符的读写事件。
2 . 都是阻塞式的,即当没有任何事件发生时,它们都会一直阻塞等待。
3 . 都可以通过设置超时时间来控制阻塞等待的时间。
不同之处:
1 . select和poll使用轮询的方式来检查所有的文件描述符,而epoll使用回调的方式,只有在有事件发生时才会调用回调函数。
2 . select和poll的文件描述符集合是通过参数传递给函数的,而epoll使用epoll_ctl函数来注册和删除文件描述符,通过epoll_wait函数来等待事件。
3 . select和poll对于大量的文件描述符来说,性能会下降,因为每次都需要遍历整个文件描述符集合,而epoll使用红黑树来存储文件描述符,效率更高。
4 . select和poll支持的文件描述符数量有一定的限制,而epoll没有明确的限制。
  总的来说,epoll相对于select和poll来说,在处理大量的并发连接时性能更好,并且使用更方便。

信号驱动式IO

  注册一个IO信号事件,在数据可操作时通过SIGIO信号通知线程,这应该算是一种异步机制.

异步IO

  应用进程通知内核开始一个异步I/O操作,并让内核在整个操作(包含将数据从内核复制到应该进程的缓冲区)完成后通知应用进程。例如POSIX 的&IO _系列函数。

select函数

头文件:
  #include <sys/select.h>
  #include <sys/time.h>
  #include <sys/types.h>
  #include <unistd.h>
函数原型:int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set *exceptfds, struct timeval *timeout);
参数介绍:
  nfds:集合中所有文件描述符的范围,即所有文件描述符的最大值+1。
  readfds:监听的读事件文件描述符集合。
  writefds:监听的写事件文件描述符集合。
  exceptfds:意外文件描述符集合。
  timeout:
>    永远等待--空指针等待固定时间--timeval结构体内的时间

返回值:返回值是一个整数,表示有多少个文件描述符已经就绪。如果返回0,表示在指定的超时时间内没有任何文件描述符就绪;如果返回-1,表示发生错误。

//FD_CLR(inr fd,fd_set* set);用来清除描述词组 set 中相关 fd 的位
//FD_ISSET(int fd,fd_set *set);用来测试描述词组 set 中相关 fd 的位是否为真(遍历检测函数)
//FD_SET(int fd,fd_set*set);用来设置描述词组 set 中相关 fd 的位
//FD_ZERO(fd_set *set);用来清除描述词组 set 的全部位(在初始化时用到以免里面有垃圾值)fd_set readfds;FD_ZERO(&readfds);//清空FD_SET(socketfd,&readfds); //用来设置描述词组 set 中相关 socketfd-fd 的位fd_set changeReadfds = readfds;int count = select(nfds,&useChangeReadfds, NULL,NULL,0);

select示例代码

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <time.h>
#include <sys/select.h>
typedef struct sockaddr  SA;
typedef struct sockaddr_in  SIN;
#define MAXBACKLOG   100int Socket(int domain,int type,int protocol);
int Bind(int sockfd,struct sockaddr * my_addr,int addrlen);
int Listen(int s,int backlog);
int Accept(int s,struct sockaddr * addr,int * addrlen);
void *  clientRecvDataFunction(void * arg);//运行格式 ./app 192.168.5.166  8888
int main(int argc,char *argv[])
{	int  opt =1;//建立监听套接字int socketfd = Socket(AF_INET,SOCK_STREAM,0);//需要进行重用地址及其端口号setsockopt(socketfd,SOL_SOCKET,SO_REUSEADDR,&opt,sizeof(opt));//绑定信息编写服务器信息SIN   serverinfo;serverinfo.sin_family =AF_INET;		//协议IPV4serverinfo.sin_port   =htons(atoi(argv[2]));	//网络字节序(大端字节序)与主机字节序(小端字节序)  serverinfo.sin_addr.s_addr=  inet_addr(argv[1]);int addrlen = sizeof(SIN);Bind(socketfd,(SA*)&serverinfo,addrlen);//监听Listen(socketfd,MAXBACKLOG);//select函数参数填写int nfds = socketfd+1;fd_set readfds;		//栈区定义  先清空  再写入位FD_ZERO(&readfds);	//清空FD_SET(socketfd,&readfds); //用来设置描述词组set中相关socketfd-fd的位//读写while(1){fd_set useChangeReadfds = readfds;int count = select(nfds,&useChangeReadfds, NULL,NULL,0);if(count >0){//文件描述符socketfd调用acceptif(FD_ISSET(socketfd,&useChangeReadfds)){SIN clientinfo;int  clientaddrlen =sizeof(SA);int newfd = Accept(socketfd,(SA*)&clientinfo,&clientaddrlen);printf("客户端地址:%s 端口号:%d\n",inet_ntoa(clientinfo.sin_addr),ntohs(clientinfo.sin_port));//将新的文件描述符添加至readfdsFD_SET(newfd,&readfds);//调整检测范围newfd >= nfds?(nfds++):(nfds =nfds);}//文件描述符非socketfd调用readelse{for(int startFd = socketfd+1; startFd < nfds;startFd++){if(FD_ISSET(startFd,&useChangeReadfds)){//读取客户端发送来的数据char readbuff[512]={0};int len = read(startFd,readbuff,sizeof(readbuff));if(len > 0){printf("%d:%s\n",startFd,readbuff);}else if(len == 0){printf("%d:客户端退出\n",startFd);FD_CLR(startFd,&readfds);//存在弊端nfds不好调整close(startFd);}else if(len < 0){printf("%d:客户端异常退出\n",startFd);FD_CLR(startFd,&readfds);//存在弊端nfds不好调整close(startFd);}}}}}}//关闭close(socketfd);return 0;
}
int Socket(int domain,int type,int protocol)
{int socketFd = socket(domain,type,protocol);if(socketFd ==-1){perror("socket");exit(1);}return socketFd;
}
int Bind(int sockfd,struct sockaddr * my_addr,int addrlen)
{int val = bind(sockfd,my_addr,addrlen);if(val){perror("bind");exit(1);}return 0;
}
int Listen(int s,int backlog)
{int val = listen(s,backlog);if(val == -1){perror("listen");exit(1);}return val;
}
int Accept(int s,struct sockaddr * addr,int * addrlen)
{int NEWfd= accept(s,addr,addrlen);if(NEWfd == -1){perror("listen");exit(1);}return NEWfd;
}

poll函数

头文件:
  #include <poll.h>
函数原型:int poll(struct pollfd fd[], nfds_t nfds, int timeout);
参数介绍:
  fd[]:文件描述符结构体。
  nfds:指定结构体数组元素个数。
  timeout:
在这里插入图片描述

返回值:成功时 poll() 返回结构体中 revents 域不为 0 的文件描述符个数,如果在超时前没有任何事件发生,poll()返回 0。

//struct pollfd结构体内容
struct pollfd
{int fd; //文件描述符 所要检测的文件描述符short events; //请求的事件 检测文件描述符的事件short revents; //返回的事件(内核给的反馈)
};struct pollfd fds[1025];//清空结构体数组//清空结构体数组for(int i = 0;i < sizeof(fds)/sizeof(struct pollfd);i++){fds[i].fd = -1;}//初始化填入 socketfd;fds[0].fd = socketfd; //文件描述符fds[0].events = POLLIN; //读事件//nfds 用来指定第一个参数数组元素个数;int nfds = 1;int count = poll(fds,nfds, -1);

poll示例代码

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <time.h>
#include <poll.h>
typedef struct sockaddr  SA;
typedef struct sockaddr_in  SIN;
#define MAXBACKLOG   100int Socket(int domain,int type,int protocol);
int Bind(int sockfd,struct sockaddr * my_addr,int addrlen);
int Listen(int s,int backlog);
int Accept(int s,struct sockaddr * addr,int * addrlen);
void *  clientRecvDataFunction(void * arg);//./app 192.168.5.166  8888
int main(int argc,char *argv[])
{	int  opt =1;//建立监听套接字int socketfd = Socket(AF_INET,SOCK_STREAM,0);//需要进行重用地址及其端口号setsockopt(socketfd,SOL_SOCKET,SO_REUSEADDR,&opt,sizeof(opt));//绑定信息编写服务器信息SIN   serverinfo;serverinfo.sin_family =AF_INET;		//协议IPV4serverinfo.sin_port   =htons(atoi(argv[2]));serverinfo.sin_addr.s_addr=  inet_addr(argv[1]);int addrlen = sizeof(SIN);Bind(socketfd,(SA*)&serverinfo,addrlen);//监听Listen(socketfd,MAXBACKLOG);//pollt函数参数填写struct pollfd fds[1025];//清空结构体数组for(int i = 0;i < sizeof(fds)/sizeof(struct pollfd);i++){fds[i].fd = -1;}//初始化填入socketfd;fds[0].fd = socketfd;		//文件描述符fds[0].events = POLLIN;		//读事件//nfds用来指定第一个参数数组元素个数;int nfds = 1;//读写while(1){int count = poll(fds,nfds, -1);if(count > 0){//检查fds[0]的fd是否发生动作------>acceptif(fds[0].revents == POLLIN){SIN clientinfo;int  clientaddrlen =sizeof(SA);int newfd = Accept(socketfd,(SA*)&clientinfo,&clientaddrlen);printf("客户端地址:%s 端口号:%d\n",inet_ntoa(clientinfo.sin_addr),ntohs(clientinfo.sin_port));//需要将newfd放至fds中for(int i = 0; i < sizeof(fds)/sizeof(struct pollfd);i++){if(fds[i].fd == -1){fds[i].fd = newfd;			//文件描述符fds[i].events = POLLIN;		//读事件i >= nfds?(nfds++):(nfds =nfds);	//nfds与下标有联系break;}}}else{//检查fds[>0]的是否发送动作-------->readfor(int startfd = 1;startfd<nfds;startfd++){if(fds[startfd].revents == POLLIN){char readbuff[512]={0};int len = read(fds[startfd].fd,readbuff,sizeof(readbuff));if(len > 0){printf("%d:%s\n",fds[startfd].fd,readbuff);}else if(len == 0){printf("%d:客户端退出\n",fds[startfd].fd);//归位处理close(fds[startfd].fd);fds[startfd].fd=-1;}else if(len < 0){printf("%d:客户端异常退出\n",fds[startfd].fd);//归位处理close(fds[startfd].fd);fds[startfd].fd=-1;}}}}}}//关闭close(socketfd);return 0;
}
//下面的函数与select相同

epoll函数

创建  epoll_create

头文件:
  #include <sys/epoll.h>
函数原型:int epoll_create(int size)
参数介绍:
  size:标识这个监听的数目最大有多大。
返回值: 成功时,这些系统调用将返回非负文件描述符。如果出错,则返回-1,并且将errno设置为指示错误。

	int epollfd = epoll_create(1024);

注册、修改、删除  epoll_ctl

头文件:
  #include <sys/epoll.h>
函数原型:int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
参数介绍:
  epfd: epoll 专用的文件描述符。
  op:要进行的操作,EPOLL_CTL_ADD 注册、EPOLL_CTL_MOD 修改、EPOLL_CTL_DEL 删除。
  fd:关联的文件描述符。
  event:指向 epoll_event 的指针。
返回值:成功返回1,失败返回0.

//结构体 epoll_event 被用于注册所感兴趣的事件和回传所发生待处理的事件,定义如下:
typedef union epoll_data_t { //联合体void *ptr;int fd; //比较常用__uint32_t u32;__uint64_t u64;
} epoll_data_t;//保存触发事件的某个文件描述符相关的数据struct epoll_event {__uint32_t events; /* epoll event */epoll_data_t data; /* User data variable */
};
/*其中 events 表示感兴趣的事件和被触发的事件,可能的取值为:
EPOLLIN:表示对应的文件描述符可以读;
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数可读;
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: ET 的 epoll 工作模式;*/struct epoll_event event;event.events = EPOLLIN; //事件成员event.data.fd = socketfd; //数据epoll_ctl(epollfd,EPOLL_CTL_ADD,socketfd, &event);

轮询 I/O 事件的发生  epoll_wait

头文件:
  #include <sys/epoll.h>
函数原型:int epoll_wait(int epfd,struct epoll_event * events,int maxevents,int timeout);
参数介绍:
  epfd:epoll 专用的文件描述符。
  events:回传处理事件的数组。
  maxevents:每次能处理的事件数。
  timeout:等待 I/O 事件发生的超时值。
返回值:返回发生的事件数,失败返回-1。

	int count = epoll_wait(epollfd,events,10,-1);

epoll示例代码

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <time.h>
#include <sys/epoll.h>typedef struct sockaddr  SA;
typedef struct sockaddr_in  SIN;
#define MAXBACKLOG   100int Socket(int domain,int type,int protocol);
int Bind(int sockfd,struct sockaddr * my_addr,int addrlen);
int Listen(int s,int backlog);
int Accept(int s,struct sockaddr * addr,int * addrlen);
void *  clientRecvDataFunction(void * arg);//./app 192.168.5.166  8888
int main(int argc,char *argv[])
{	int  opt =1;//建立监听套接字int socketfd = Socket(AF_INET,SOCK_STREAM,0);//需要进行重用地址及其端口号setsockopt(socketfd,SOL_SOCKET,SO_REUSEADDR,&opt,sizeof(opt));//绑定信息编写服务器信息SIN   serverinfo;serverinfo.sin_family =AF_INET;		//协议IPV4serverinfo.sin_port   =htons(atoi(argv[2]));serverinfo.sin_addr.s_addr=  inet_addr(argv[1]);int addrlen = sizeof(SIN);Bind(socketfd,(SA*)&serverinfo,addrlen);//监听Listen(socketfd,MAXBACKLOG);//epollt创建根节点int epollfd = epoll_create(1024);//添加socketfd文件描述符至内核 红黑树struct epoll_event event;event.events = EPOLLIN;			//事件成员event.data.fd = socketfd;		//数据epoll_ctl(epollfd,EPOLL_CTL_ADD,socketfd, &event);//读写while(1){struct epoll_event  events[10];int count = epoll_wait(epollfd,events,10,-1);if(count > 0){for(int i = 0; i< count;i++){if(events[i].events == EPOLLIN){if(events[i].data.fd==socketfd){//等待连接SIN clientinfo;struct epoll_event event;int  clientaddrlen =sizeof(SA);int newfd = Accept(socketfd,(SA*)&clientinfo,&clientaddrlen);printf("客户端地址:%s 端口号:%d\n",inet_ntoa(clientinfo.sin_addr),ntohs(clientinfo.sin_port));//需要将newfd放至红黑树中event.events = EPOLLIN;			//事件成员event.data.fd = newfd;			//数据epoll_ctl(epollfd,EPOLL_CTL_ADD,newfd, &event);}else{//readchar readbuff[512]={0};int len = read(events[i].data.fd,readbuff,sizeof(readbuff));if(len > 0){printf("%d:%s\n",events[i].data.fd,readbuff);}else if(len == 0){printf("%d:客户端退出\n",events[i].data.fd);epoll_ctl(epollfd,EPOLL_CTL_DEL,events[i].data.fd,NULL);close(events[i].data.fd);}else if(len < 0){printf("%d:客户端异常退出\n",events[i].data.fd);epoll_ctl(epollfd,EPOLL_CTL_DEL,events[i].data.fd,NULL);close(events[i].data.fd);}}}}}}//关闭close(socketfd);return 0;
}
//下面的函数与select相同

基于TCP和epoll在线多人聊天室服务器例子

点我查看

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/206815.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java8新特性 ----- Lambda表达式和方法引用/构造器引用详解

前言 在讲一下内容之前,我们需要引入函数式接口的概念 什么是函数式接口呢? 函数式接口&#xff1a;有且仅有一个抽象方法的接口 java中函数式编程的体现就是Lambda表达式,你可以认为函数式接口就是适用于Lambda表达式的接口. 也可以加上注解来在编译层次上限制函数式接口 Fun…

解决ESP32内部RAM内存不足的问题

一&#xff0c;为什么需要外部RAM ESP32有520kB的内部RAM空间可以使用&#xff0c;这对于一般的情况是够用的&#xff0c;但是如果设备需要涉及音频或者显示图像等处理时&#xff0c;需要更大的内存空间来处理这些数据。ESP32支持扩展外部RAM&#xff0c;其实乐鑫已经在其ESP32…

Axios简单使用与配置安装-Vue

安装Axios npm i axios main.js 导入 import Axios from axios Vue.prototype.$axios Axios简单发送请求 get getTest() {this.$axios({method: GET,url: https://apis.jxcxin.cn/api/title?urlhttps://apis.jxcxin.cn/}).then(res > {//请求成功回调console.log(res)}…

【LeetCode刷题】-- 29.两数相除

29.两数相除 思路&#xff1a; class Solution {public int divide(int dividend, int divisor) {//考察被除数为最小值的情况if(dividend Integer.MIN_VALUE){//被除数为最小值&#xff0c;除数是1&#xff0c;返回最小值if(divisor 1){return Integer.MIN_VALUE;}//除数是-…

重磅!这本30w人都在看的Python数据分析畅销书:更新了!

想学习python进行数据分析&#xff0c;这本《利用python进行数据分析》是绕不开的一本书。目前该书根据Python3.10已经更新到第三版。 Python 语言极具吸引力。自从 1991 年诞生以来&#xff0c;Python 如今已经成为最受欢迎的解释型编程语言。 pandas 诞生于2008年。它是由韦…

2024贵州大学计算机考研分析

24计算机考研|上岸指南 贵州大学 贵州大学计算机科学与技术学院&#xff08;贵州大学省级示范性软件学院&#xff09;位于贵州省贵阳市花溪区贵州大学东校区。 计算机科学与技术学院&#xff08;软件学院&#xff09;自1972年创办计算机软件本科专业开始&#xff0c;至今已有…

Python安装入门

目录 1 从应用商店安装2 通过官方安装3 验证安装是否成功4 打印hello world总结 1 从应用商店安装 推荐使用微软的应用商店安装&#xff0c;打开开始菜单 在应用商店搜索python 选择最新的版本下载并安装即可 2 通过官方安装 也可以使用官网的安装包&#xff0c;输入如下网…

csdn最新最全pytest系列——pluggy插件源码解读(一)HookspecMarker类和HookimplMarker类分析

简介 pluggy是一个非常优秀的插件系统&#xff0c;它是理解pytest的核心&#xff0c;只有理解了pluggy的原理&#xff0c;才能更好的理解和使用pytest&#xff0c;否则见到了pytest的很多应用都会感觉很难理解 pluggy插件总共的代码量不足一千行&#xff0c;而实现的功能却是…

RTS 客户端-服务器网络

Stone Monarch 从一开始就支持多人游戏&#xff0c;但随着时间的推移&#xff0c;网络模型经历了多次迭代。我最初基于这篇著名的帝国时代文章实现了点对点锁步模型。 点对点锁定步骤有一些众所周知的问题。点对点方面使玩家很难相互连接&#xff0c;并增加了每个新玩家的网络…

vivado产生报告阅读分析15-时序报告11

Report Clock Domain Crossings “ Clock Domain Crossings (CDC) ” &#xff08; 时钟域交汇 &#xff09; 报告可对设计中的时钟域交汇执行结构分析。此信息可用于识别潜在不安全的 CDC &#xff0c; 此类 CDC 可能导致亚稳态或数据一致性问题。虽然 CDC 报告与“ Clock …

PostMan接口测试教程

1、下载和安装 Postman: 前往 Postman 官网 &#xff08;https://www.postman.com&#xff09;&#xff0c;下载适用于你的操作系统的 Postman 客户端。 执行下载后的安装程序&#xff0c;并按照安装向导的指引完成安装过程。 2、创建一个新的集合&#xff1a; 打开 Postma…

Python配置与测试利器:Hydra + pytest的完美结合

简介&#xff1a;Hydra 和 pytest 可以一起使用&#xff0c;基于 Hydra Pytest 的应用可以轻松地管理复杂配置&#xff0c;并编写参数化的单元测试&#xff0c;使得Python开发和测试将变得更为高效。 安装&#xff1a; pip install hydra-core pytest案例源码&#xff1a;my…