论文笔记:Localizing Cell Towers fromCrowdsourced Measurements

2015

1 Intro

1.1 motivation

  • opensignal.com 、cellmapper.net  和 opencellid.org 都是提供天线(antenna)位置的网站
    • 他们提供的天线位置相当准确,但至少在大多数情况下不完全正确
    • 这个目标难以实现的原因是蜂窝网络供应商没有义务提供有关天线位置的数据,只有在少数特定国家才知道一些正确的蜂窝网络天线位置
    • 那么这些网站如何知道其余的天线在哪里呢?答案是众包(crowdsourcing)
      • 众包涉及使用大量人群来完成任务或解决问题
      • 将某事外包给一个未定义的人群。
      • 这样的人群通常彼此不认识,就像在线社区或一般公众一样。
      • 当众包过程启动时,发起者向目标人群提出请求。
        • App收集手机连接的天线、接收信号的强度和智能手机的位置等数据
        • 这种数据收集,也称为测量
  • 这篇论文进行的研究是:我们如何基于众包数据估计蜂窝网络天线的位置?

1.2 OpencellID的方法

  • OpenCellID 用来计算蜂窝网络天线位置的算法非常简单。
    • 基于为天线收集的测量数据,将天线的经纬度坐标设置为这些测量的经纬度的平均值
  • 不是一个好方法,因为天线以通常水平方向120度的披萨片形状广播信号。全向天线非常罕见
    • 这意味着 OpenCellID 中的大多数天线被估计位于披萨片形扇区的大约中间,而正确的位置应该是每次测量都在天线120度范围内的某个方向

1.3 了解天线位置的好处

  • 最直接的应用是作为GPS的替代品
    • GPS 为接收到四个以上 GPS 卫星信号的设备提供不到 1 米的定位误差,但需要特殊的硬件技术,这既昂贵又耗能
    • 假设我们知道每个蜂窝网络天线的正确位置,以及每个天线正在向哪些移动设备广播。那么我们可以使用这些信息来定位和跟踪个别设备
    • GPS 的一种经济有效的替代方案
    • 特别是在 GPS 不可用的地方,通过蜂窝网络进行定位可以是一项宝贵的资产
  • 对于个人用户来说,了解蜂窝网络天线位置可以帮助他们在居住地区找到最佳网络提供商
    • 如果用户担心无线电波的辐射,他可以根据追踪蜂窝网络天线位置收集到的无线电发射数据来选择居住区域
  • 社会也可以从移动设备的蜂窝网络天线定位中受益
    • 通过收集连接到数十个移动设备的天线数据,例如在一天或一年中的特定时间,或在下雨或阳光明媚时,可以帮助发展基础设施或文化游览地点。
    • 例如,这样的数据可以证明在许多人经过的路径沿线建新路,或在夏天阳光明媚时许多人经过的地方建游乐园的决策是合理的

1.4 Preliminary

  • 一个“小区”(cell)是由蜂窝网络天线(antenna)覆盖的地理区域​​。
    • 来自这个天线的信号有潜力到达小区内的每个移动设备
  • 天线位于一个小区塔(cell tower)上,或更一般地说是一个基站(base station)
  • 一个小区的覆盖区域为“小区扇区”(cell sector),小区扇区的角度为“小区扇区角度”(cell sector angle),小区扇区的边缘为“小区边缘”(cell edges)。这些组件,连同测量数据,构成了一个小区
    • 小区扇区角度在大多数情况下总是120°。一些蜂窝网络提供商也使用小区扇区角度更小的小区,例如60°。这在例如城市地区可能是有益的。
    • 通常,三个或更多小区共享一个小区塔以覆盖小区塔周围360°角度内的所有内容。
    • 小区塔将有几个指向不同方向的天线
  • 为了避免断开连接并支持高需求,小区和小区塔理论上如下图组织
    • 将小区想象为一个六边形系统
    • 每个六边形至少由三个不同的小区塔覆盖
    • 小区塔或天线的强度可能覆盖超过自己的六边形
      • 这确保了对用户的有效重叠和蜂窝网络的持续连接
  • 实际上,维护六边形系统是困难的
    • 小区塔需要放置在一定高度,且在试图覆盖特定区域时必须考虑建筑物、山脉或其他障碍物
    • 城市地区可能需要多个天线来覆盖有许多障碍物的小区域,而农村地区可能比理论上需要的少

2 方法1:Cell Tower Localization based on Distance (D-CTL)

2.1 小cell angle

  • 假设小区在狭窄的扇区内广播,比如10°而不是120°,来简化我们的问题定义。
    • ——>意味着小区覆盖的区域更集中
  • 还假设接收信号强度(RSS)不可用,并且从小区塔到测量点的最大距离为113。
    • ——>利用小区内测量点之间的距离来估算小区塔的位置

2.2  子步骤1: D-DL(基于距离的方向线)子程序

2.2.1 问题举例

  • 在图4.1a中,显示了一个具有10°小区扇区和20个随机分布的测量点的生成小区
  • 现在假设我们不知道小区塔的位置或小区边缘的角度,如图4.1b所示
  • 我们提出以下问题:当我们只知道测量点的位置时,小区塔位于测量点的哪个方向?
    • 通过观察图形我们可以轻松猜测答案,但我们需要以算法的方式得出答案。

2.2.2 D-DL 算法

2.3 子步骤2 & 子步骤3 :计算扇区 & 查找扇区

  • 我们现在假设我们已经使用了D-DL来计算 l_direction,其端点为 ep1 和 ep2
    • l_direction 提供了关于我们估计小区塔位于测量点的哪个方向的信息。
  • 由于我们对测量点没有比它们的位置更多的信息,因此我们无法知道正确的小区塔是位于 ep1 还是 ep2。
    • 因此,我们为两个端点各自计算估计的小区扇区
  • D-CTL算法的第二和第三个子程序:计算扇区(CS)和查找扇区(FS)
    • CS和FS的目的是计算由 l_direction 的一个端点生成的小区扇区 C_{heuristic},以便每个测量点 m ∈ M 都适合其中
    • FS通过进行多次迭代来计算C_{heuristic}。对于每次迭代,如果每个 m 不适合当前计算的小区扇区,FS 将对 CS 进行新的调用,延长 l_direction,从而计算出新的小区扇区
  • 下边对于CS和FS的介绍,都以小区塔在ep1为例,ep2同理

2.3.1 计算扇区

  • CS以 l_direction 和 α 为输入,其中 α 是小区扇区角度。
  • 它首先围绕 ep1 向两个方向各旋转 l_direction,角度为 α/2
  • 然后,它返回,ep1 作为小区塔位置,以及从旋转 l_direction 得到的两条线作为小区边缘

2.3.2 查找扇区

  • FS 以 M、l_direction、d_{extend}和 α 为输入,其中d_{extend}是一个常数
  • 它首先声明变量C_{heuristic}
  • 然后它调用 CS 来计算初始估计的小区扇区,原始的 ep1 作为小区塔位置,并将其存储在 C_{heuristic}
  • 然后它进行多次迭代。
    • 对于每次迭代:如果 m 不适合C_{heuristic},它将 l_direction 沿着 ep1 以常数长度 d_{extend} 扩展
    • 对 CS 进行新的调用,将新的 l_direction 作为输入
  • 当每个 m 都适合C_{heuristic}时,迭代停止

2.4 步骤4:根据距离选择方向(D-CD)

  • 现在假设我们已经使用了D-DL来计算 l_direction,其端点为 ep1 和 ep2,并且使用了FS来计算两个估计的小区扇区解决方案 Cheuristic1 和 Cheuristic2。
  • 现在我们想选择其中一个作为最终估计的小区扇区解决方案和相应的小区塔位置

2.4.1 假设

  • 在一个小区扇区中,我们离小区塔越远,形成小区边缘的两条线 l1 和 l2 之间的距离就越大
  • 一个完美代表小区指向的线 l 应该与小区塔相交,并在 l1 和 l2 之间,使得从 l 到 l1 的距离和从 l 到 l2 的距离始终相等

  • 这意味着离小区塔较远的测量点可能比靠近它的测量点离 l 更远。
  • 现在考虑 l 的两个端点 lep1 和 lep2,以及我们随机分布的测量点。
    • 设 S1 为更接近 lep1 的测量点子集,S2 为 更接近 lep2 的测量点子集。
    • 我们计算 S1 中测量点到 l 的最小可能距离的平均值 mean1,以及 S2 中测量点到 l 的最小可能距离的平均值 mean2。
    • 如果 mean1 < mean2,则 lep1 是 l 在正确的小区塔位置的端点。
    • 如果 mean2 < mean1,则 lep2 是 l 在正确的小区塔位置的端点。
  • 这个假设对于每个 10 <= α <= 120 都适用。

2.4.2 D-CD 算法

  • 我们没有这样一个完美的方向线 l,所以我们改用 l_direction,其端点为 ep1 和 ep2

2.5 方法1 对应的实验

2.5.1 d_extend(子步骤3每次l_direction增加长度)对于结果的影响

2.5.2 max_distance(每个信号站的最远波及范围)的影响

2.5.3 小区夹角的影响

3 方法2:Cell Tower Localization based on Received Signal Strength (RSS-CTL)

  • 基于属于小区的测量数据中的接收信号强度(RSS)值来估算小区塔的位置

3.1 大cell angle——基于接收信号强度估计基站位置

  • 这一章假设α=120°
  • 假设每个测量都配备了 RSS。我们现在将利用 RSS 而不是测量点之间的距离来估算小区塔位置

3.2 基于RSS 计算direction LIne(RSS-DL)

RSS-DL与D-DL子程序的唯一区别在于,RSS-DL比较的是两个测量点之间的RSS值,而不是距离

3.3 基于RSS 计算扇区& 查找扇区

CS和FS不做修改

3.4 基于RSS 选择方向

和前面的D-CD类似,区别是这里计算S1和S2 RSS的平均值,而不是距离的平均值

3.5 方法2对应的实验

3.5.1 d_extend

3.5.2 max_distance

4 OpenCellId上进行测试

(这里研究的主要是挪威的数据)

4.1 数据结构

  • OpenCellID 数据的结构如下所述。其中包含小区(cell)和测量(measurement)对象
    • 当收集到的测量数据是之前未见过的小区时,会创建一个新的小区对象
    • 每次为小区添加新测量时,小区对象的几个数据字段都会更新

论文给出的opencellId 数据结构我并没有在官网上 找到。。。

4.2 数据梗概

4.2.1 Identification

一个小区通过四个不同的值来识别;mcc(移动国家码)、net(网络运营商码)、area(区域码)和cell(小区码)。这些分别告诉我们哪个国家、哪个蜂窝网络提供商、该国内的哪个区域以及哪个ID属于该小区。

4.2.2 基站的实际位置是否已知

  • OpenCellID通过计算小区测量点的经度和纬度的平均值来估算该小区的小区塔位置
  • 但也有一些例外情况
  • changeable字段告诉我们小区塔位置是否已经使用可用测量数据计算过
    • 为0,则该小区塔的位置是正确的
    • 在这种情况下,OpenCellID已经从某些国家的某些蜂窝网络提供商那里获得了关于正确小区塔位置的数据。这涉及的国家包括俄罗斯、德国和波兰
  • 论文代数据库中的每个小区,检查每个小区的changeable值,并存储changeable值为0的每个小区的mcc值

4.3 过滤数据

4.3.1 GSM

论文选择GSM小区作为测试算法的数据集合

4.3.2 changeable

只考虑changeable为0,也即运营商提供数据的部分

4.4 清洗数据

4.4.1 r_include 验证测量到小区塔的距离

  • 小区塔的广播范围不是无限远的,有些测量距离其所属小区塔太远,不能视为有效
    • 如果测量距离正确的小区塔位置超过 rinclude 的值,我们在运行 D-CTL 和 RSS-CTL 算法时不会包括这个测量
    • 当我们不知道正确的小区塔位置时,我们计算测量的经度和纬度的平均值,并使用这个测量的几何中心作为r_include的原点
  • Macro-cell 是具有最强广播能力的小区类型
    • 标准理论范围是35公里
    • 使用这个距离作为验证测量到其小区塔距离的最大 r_include 值

4.4.2 接收信号强度(RSS)验证

  • 测量的 RSS 要么是 dBm 值,要么是 0 到 31(包含)之间的数字
    • 蜂窝信号的 dBm 值总是负数
      • ——>定义了从负 dBm 值到正数的映射

\

  • RSS 值大于 31 的测量将不被视为有效。当在包含 0 到 31 的 RSS 值的测量的小区上运行 D-CTL 和 RSS-CTL 算法时,论文将这些转换为 dBm 值(2x-113)

4.4.3 小区测量中的接收信号强度值

  • 需要考虑一个小区的所有测量中不同 RSS 值的总数
    • ——阈值设置为3

4.4.4 m_max,m_min

  • 每个小区的测量数量

4.4.5 有效测量标准

  • 与正确的小区塔位置的距离小于或等于 rinclude。
  • RSS 值小于或等于 31

4.4.6 有效小区标准

  • 测量中不同 RSS 值的总数大于或等于 3。
  • 测量总数不少于 mmin 且不超过 mmax。

5 在挪威卑尔根的实验结果

5.1 和OpenCellID相比的结果

其实没有OpenCellID能打。。。

5.2 运行时间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/208091.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

02 请求默认值

一、HTTP请求默认值&#xff1a;是用来管理所有请求共有的协议、网址、端口等信息的&#xff1b;通常情况下&#xff0c;一批量的接口测试&#xff0c;访问的是同一个站点&#xff0c;那么以上信息基本都是相同的&#xff0c;就不需要在每个请求中重复编写&#xff1b; 每个请…

【EI会议征稿】第九届能源科学与化学工程国际学术研讨会 (ISESCE 2024)

第九届能源科学与化学工程国际学术研讨会 &#xff08;ISESCE 2024&#xff09; 2024 9th International Symposium on Energy Science and Chemical Engineering 第九届能源科学与化学工程国际学术研讨会&#xff08;ISESCE 2024&#xff09;定于2024年3月22-24日在中国南京…

世微 dc-dc降压恒流 LED汽车大灯 单灯 14V5A 68W车灯驱动方案 AP5191

产品描述 AP5191是一款PWM工作模式,高效率、外围简单、外置功率MOS管&#xff0c;适用于4.5-150V输入的高精度降压LED恒流驱动芯片。输出最大功率150W&#xff0c;最大电流6A。AP5191可实现线性调光和PWM调光&#xff0c;线性调光脚有效电压范围0.55-2.6V.AP5191 工作频率可以…

银升玻璃能源数据采集监控方案

项目背景 监控配电房电表的电压、电流、功率、总电能等数据。 监控配电房变压器的电流、温度数据&#xff0c;在数据超出额定指标时&#xff0c;进行报警推送。 现场调研情况 经过现场调研&#xff0c;共有3个变压器房&#xff0c;有不同类型的电表。具体如下表&#xff1a…

GD32替换STM32使用HAL库开发问题

GD32HAL库开发问题 1can初始化进入error handle2发送邮箱不能按照填写顺序发送3 GD32修改代码被stm32cudemx覆盖问题 1can初始化进入error handle HAL库的HAL_CAN_Init中&#xff0c;hcan->Instance->MSR寄存器无法清零&#xff0c;STM32先清零&#xff0c;再退出睡眠模…

算法——双指针

一、背景知识 双指针&#xff08;Two Pointers&#xff09;&#xff1a;指的是在遍历元素的过程中&#xff0c;不是使用单个指针进行访问&#xff0c;而是使用两个指针进行访问&#xff0c;从而达到相应的目的。对撞时针&#xff1a; 两个指针方向相反对撞指针一般用来解决有序…

浅谈能源智能管理系统在大学高校中的应用

安科瑞 华楠 摘要&#xff1a;结合深圳南方科技大学能效系统工程设计实例&#xff0c;针对校园中电耗、热量消耗、冷量消耗及水资源消耗数据的采集、传输、分析管理系统&#xff0c;分析了系统中的水、电、气在高校中的能耗分布&#xff0c;并阐述了节能应用方案&#xff0c;可…

Java 编码

编码: 加密: 通过加密算法和密钥进行 也可通过码表进行加密 对称加密: 缺点:可被截获 元数据---加密算法密钥密文 ----> 解密算法密钥元数据 算法:DES(短 56位),AES(长 128位)破解时间加长 非对称加密: 元数据-加密算法加密密钥 密文 --->加密算法解密密钥元数据 …

在终端输入任意的英文字符串,求最后一个单词的长度

实例要求&#xff1a;1、在终端输入任意的英文字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开&#xff1b;2、返回字符串中 最后一个 单词的长度&#xff1b;3、单词 是指仅由字母组成、不包含任何空格字符的最大子字符串&#xff1b;示例代码&…

C++(模板进阶)

目录 前言&#xff1a; 本章学习目标&#xff1a; 1.非类型模版参数 1.1使用方法 1.2注意事项 1.3 实际引用 2.模版特化 2.1概念 2.2函数模板特化 2.3类模板特化 2.3.1全特化 2.3.2偏特化 3.模版分离编译 ​编辑 3.1失败原因 ​编辑 3.2解决方案 4 总结 前言&…

SQL 中的 MIN 和 MAX 以及常见函数详解及示例演示

SQL MIN() 和 MAX() 函数 SQL中的MIN()函数和MAX()函数用于查找所选列的最小值和最大值&#xff0c;分别。以下是它们的用法和示例&#xff1a; MIN() 函数 MIN()函数返回所选列的最小值。 示例&#xff1a; 查找Products表中的最低价格&#xff1a; SELECT MIN(Price) F…

设计循环队列,解决假溢出问题

什么是假溢出&#xff1f; 当我们使用队列这种基本的数据结构时&#xff0c;很容易发现&#xff0c;随着入队和出队操作的不断进行&#xff0c;队列的数据区域不断地偏向队尾方向移动。当我们的队尾指针指向了队列之外的区域时&#xff0c;我们就不能再进行入队操作了&#xff…