语音识别入门——常用软件及python运用

工具以及使用到的库

  • ffmpeg
  • sox
  • audacity
  • pydub
  • scipy
  • librosa
  • pyAudioAnalysis
  • plotly

本文分为两个部分:

P1如何使用ffmpeg和sox处理音频文件
P2如何编程处理音频文件并执行基本处理


P1 处理语音数据——命令行方式


格式转换

ffmpeg -i video.mkv audio.mp3

使用ffmpeg将输入mkv文件转为mp3文件


降采样、通道转换

ffmpeg -i audio.wav -ar 16000 -ac 1 audio_16K_mono.wav
  • ar:声频采样率(audio rate)
  • ac:声频通道(audio channel)
    此处是将原来44.1kHz的双通道wav文件转为单通道wav文件

获取音频信息

ffmpeg -i audio_16K_mono.wav

将得到

Input #0, wav, from ‘audio_16K_mono.wav’:
Metadata:
encoder : Lavf57.71.100
Duration: 00:03:10.29, bitrate: 256 kb/s
Stream #0:0: Audio: pcm_s16le ([1][0][0][0] / 0x0001), 16000 Hz,
mono, s16, 256 kb/s
  • #0表示只有一个通道
  • encoder:为libavformat支持的一种容器
  • Duration:时长
  • bitrate:比特率256kb/s,表示音频每秒传输的数据量,高质量音频一般比较大
  • Stram:流
  • #0:0:单通道
  • pcm_s16le:
    • pcm(脉冲编码调制,pulse-code modulation)
    • signed integer 16:(16位有符号整型)格式采样
    • le表示小端(little endian),高位数据存地址高位,地位数据存地址地位,有如[1][0][0][0] / 0x0001。
  • mono:单通道

小插曲

最近看到一道数据类型题
题目:为什么float类型 ( 1 e 10 + 3.14 ) − 1 e 10 = 0 ? \mathbf{(1e10+3.14)-1e10=0?} (1e10+3.14)1e10=0?
解题如下:
1 e 10 \mathbf{1e10} 1e10二进制表示为:
001 0 ′ 010 1 ′ 010 0 ′ 000 0 ′ 101 1 ′ 111 0 ′ 010 0 ′ 000 0 ′ 0000 \mathbf{0010'0101'0100'0000'1011'1110'0100'0000'0000} 001001010100000010111110010000000000
或者表示为
1.001 0 ′ 101 0 ′ 000 0 ′ 010 1 ′ 111 1 ′ 001 0 ′ 000 0 ′ 000 0 ′ 0 2 ∗ 2 33 \mathbf{1.0010'1010'0000'0101'1111'0010'0000'0000'0_2*2^{33}} 1.0010101000000101111100100000000002233

浮点数三要素

  • 首位:0表示正数,1表示负数
  • 中间位,8位,为科学计数法指数部分,上例为33与偏置量(127)的和,此例为160,二进制为1010’0000
  • 尾部:23位,二进制表示的小数部分的前23位,此例为0010’1010’0000’0101’1111’001
    1 e 10 \mathbf{1e10} 1e10的浮点数为:
    0 ′ 101 0 ′ 000 0 ′ 001 0 ′ 101 0 ′ 000 0 ′ 010 1 ′ 111 1 ′ 001 \mathbf{0'1010'0000'0010'1010'0000'0101'1111'001} 01010000000101010000001011111001
    到此为止,可知舍去了科学计数法中小数部分的后10位

小数的二进制表示两个要素

  • 整数部分:正常表示,3.14整数部分为0011
  • 小数部分:乘以2取整数部分,
    • 0.14*2=0.28 取0
    • 0.28*2=0.56 取0
    • 0.56*2=1.12 取1
    • 0.12*2=0.24 取0
    • 0.24*2=0.48 取0
    • 0.48*2=0.96 取0
    • 0.96*2=1.92 取1

3.14的二进制表示为:
11.0010001... \mathbf{11.0010001...} 11.0010001...
综上, 1 e 10 + 3.14 \mathbf{1e10+3.14} 1e10+3.14的二进制表示为:
1.001 0 ′ 101 0 ′ 000 0 ′ 010 1 ′ 111 1 ′ 001 0 ′ 000 0 ′ 000 1 ′ 1001 ’ 000 1 2 ∗ 2 33 \mathbf{1.0010'1010'0000'0101'1111'0010'0000'0001'1001’0001_2*2^{33}} 1.001010100000010111110010000000011001’00012233
转为浮点数,为
0 ′ 101 0 ′ 000 0 ′ 001 0 ′ 101 0 ′ 000 0 ′ 010 1 ′ 111 1 ′ 001 \mathbf{0'1010'0000'0010'1010'0000'0101'1111'001} 01010000000101010000001011111001
1 e 10 \mathbf{1e10} 1e10一样,故float类型 ( 1 e 10 + 3.14 ) − 3.14 = 0 \mathbf{(1e10+3.14)-3.14}=0 (1e10+3.14)3.14=0


修剪音频

ffmpeg -i audio.wav -ss 60 -t 20 audio_small.wav
  • i:输入音频audio.wav
  • ss: 截取起始秒
  • t:截取段时长
  • audio_small.wav:输出文件

串联视频

新建一个list_of_files_to_concat的txt文档,内容如下:

file 'file1.wav'
file 'file2.wav'
file 'file3.wav'

采用以下命令行,可将三个文件串联输出,编码方式为复制

ffmpeg -f concat -i list_of_files_to_concat -c copy output.wav

分割视频

以下命令行将输入视频分割为1s一个

ffmpeg -i output.wav -f segment -segment_time 1 -c copy out%05d.wav

交换声道

ffmpeg -i stereo.wav -map_channel 0.0.1 -map_channel 0.0.0 stereo_inverted.wav
  • 0.0.1输入文件音频流右声道
  • 0.0.0输入文件音频流左声道

合并声道

ffmpeg -i left.wav -i right.wav -filter_complex "[0:a][1:a]join=inputs=2:channel_layout=stereo[a]" -map "[a]" mix_channels.wav
  • filter_complex:复杂音频滤波器图
  • [0:a],[1:a]:第一个和第二个文件的音频流
  • join=inputs=2:表示两个输入流混合
  • channel_layout=stereo:混合后输出为立体声
  • [a]:输出音频流标签
  • map ”[a]":将‘[a]'标签的音频流映射到输出文件

分割立体声音频为左右单声道文件

ffmpeg -i stereo.wav -map_channel 0.0.0 left.wav -map_channel 0.0.1 right.wav
  • map_channel 0.0.0:将左声道映射到第一个输出文件
  • map_channel 0.0.1:将右声道映射到第二个输出文件

将某个声道静音

ffmpeg -i stereo.wav -map_channel -1 -map_channel 0.0.1 muted.wav
  • map_channel -1:忽略某声道
  • map_channel 0.0.1:将右声道映射到输出文件

音量调节

ffmpeg -i data/music_44100.wav -filter:a “volume=0.5” data/music_44100_volume_50.wav
ffmpeg -i data/music_44100.wav -filter:a “volume=2.0” data/music_44100_volume_200.wav
  • filter:a:使用音频过滤器
  • “volume=0.5”:将音频音量变为原来一半
  • “volume=2”:将音频音量变为原来两倍
    声量调节
图1 原声,半声,倍声(自上而下)
由图1可知,二倍声出现削波(失真)现象。

sox音量调节

sox -v 0.5 data/music_44100.wav data/music_44100_volume_50_sox.wav
sox -v 2.0 data/music_44100.wav data/music_44100_volume_200_sox.wav

sox -v n \text{sox -v n} sox -v n 输入文件路径 输出文件路径

  • v n:音量调节系数,n可理解为倍数。

P2 处理语音数据——编程方式


  • wav: scipy.io.wavfile
  • mp3:pydub

以数组形式加载音频文件

# 以数组形式读取wav和mp3
from pydub import AudioSegment
import numpy as np
from scipy.io import wavfile# 用 scipy.io.wavfile 读取wav文件
fs_wav, data_wav = wavfile.read("resampled.wav")# 用 pydub 读取mp3
audiofile = AudioSegment.from_file("resampled.mp3")
data_mp3 = np.array(audiofile.get_array_of_samples())
fs_mp3 = audiofile.frame_rateprint('Sq Error Between mp3 and wav data = {}'.format(((data_mp3 - data_wav)**2).sum()/len(data_wav)))
print('Signal Duration = {} seconds'.format(data_wav.shape[0] / fs_wav))
# 输出,我使用ffmpeg将wav转成MP3,比特率将为24kb
Sq Error Between mp3 and wav data = 3775.2859044790266
Signal Duration = 34.5513125 seconds

显示左右声道

import numpy as np
from scipy.io import wavfile
import matplotlib.pyplot as plt
fs,data=wavfile.read('resampled_double.wav')
time=np.arange(0,len(data))/fs
fig,axs=plt.subplots(2,1,figsize=(10,6),sharex=True)
axs[0].plot(time,data[:,0],label='Left Channel',color='blue')
axs[0].set_ylabel('Amplitude')
axs[0].legend()
axs[1].plot(time,data[:,1],label='Right Channel',color='orange')
axs[1].set_ylabel('Amplitute')
axs[1].set_xlabel('Time(seconds)')
axs[1].legend()
plt.suptitle("Stereo Audio Waveform")
plt.show()

左右声道

图2 左右声道展示

正则化

import matplotlib.pyplot as plt
from scipy.io import wavfile
import numpy as np
fs,data = wavfile.read("resampled_double.wav")
time=np.arange(0,len(data))/fs
plt.figure(figsize=(10,4))
plt.plot(time,data[:,0]/2^15)
plt.xlabel('Time(seconds)')
plt.ylabel('Amplitude')
plt.title('Stereo Audio Waveform')

量化后的波形图

图3 数据量化后的波形图

修剪音频

# 显示2到4秒的波形
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
fs,data=wavfile.read('resampled_double.wav')
time=np.arange(0,len(data[2*fs:4*fs]))/fs
plt.figure(figsize=(10,4))
plt.plot(time,data[2*fs:4*fs])
plt.xlabel('Time/s')
plt.ylabel('Amplitude')
plt.title('Stereo Audio Waveform')
plt.show()

剪辑音频

图4 剪辑后音频波形

分割为固定大小

import numpy as np
from scipy.io import wavfile
import IPython
fs,signal=wavfile.read("resampled.wav")
segment_size_t=1
segment_size=segment_size_t*fs
segments=[signal[x:x+segment_size]for x in range(0,len(signal),segment_size)]
for i,s in enumerate(segments):if len(s)<segment_size:s=np.pad(s,(0,(segment_size-len(s))),'constant')		# 这里是为了每个clip都为1swavfile.write(f"resampled_segment_{i}_{i+1}.wav",fs,s)
IPython.display.display(IPython.display.Audio("resampled_segment_34_35.wav"))
# 输出,成功输出35个1s的wav文件

简单算法——删去无声片段

import IPython
import matplotlib.pyplot as plt
import numpy as np
energies=[((s/2**15)**2).sum()/len(s) for s in segments]	# 防止溢出
thres=np.percentile(energies,20)
indices_of_segments_to_keep=(np.where(energies>thres)[0])
segments2=np.array(segments)[indices_of_segments_to_keep]
new_signal=np.concatenate(segments2)
wavfile.write("processed_new.wav",fs,new_signal.astype(np.int16))	# 转成int
plt.figure(figsize=(10,6))
plt.plot(energies,label="Energies",color="red")
plt.plot(np.ones(len(energies))*thres,label="Thresholds",color="blue")
plt.title("Energies VS Thresholds")
plt.legend()
plt.show()
IPython.display.display(IPython.display.Audio("processed_new.wav"))
IPython.display.display(IPython.display.Audio("resampled.wav"))

过滤静音片段
音频的时长

图5 根据能量无声片段的删除及删除后的时长

往单声道音频中加入节拍

import numpy as np
import scipy.io.wavfile as wavfile
import librosa
import IPython
import matplotlib.pyplot as plt# 加载文件并提取节奏和节拍:
[Fs, s] = wavfile.read('resampled.wav')
tempo, beats = librosa.beat.beat_track(y=s.astype('float'), sr=Fs, units="time")
beats -= 0.05# 在每个节拍的第二个声道上添加小的220Hz声音
s = s.reshape(-1, 1)
s = np.array(np.concatenate((s, np.zeros(s.shape)), axis=1))
for ib, b in enumerate(beats):t = np.arange(0, 0.2, 1.0 / Fs)amp_mod = 0.2 / (np.sqrt(t)+0.2) - 0.2amp_mod[amp_mod < 0] = 0x = s.max() * np.cos(2 * np.pi * t * 220) * amp_mods[int(Fs * b): int(Fs * b) + int(x.shape[0]), 1] = x.astype('int16')# 写入一个wav文件,其中第二个声道具有估计的节奏:
wavfile.write("tempo.wav", Fs, np.int16(s))# 在笔记本中播放生成的文件:
IPython.display.display(IPython.display.Audio("tempo.wav"))# 绘制波形图
time = np.arange(0, len(s)) / Fs
fig, axs = plt.subplots(2, 1, figsize=(10, 6), sharex=True)
axs[0].plot(time, s[:, 0], label='左声道', color='orange')
axs[0].set_ylabel('振幅')
axs[0].legend()
axs[1].plot(time, s[:, 1], label='右声道', color='blue')
axs[1].set_xlabel("时间/秒")
axs[1].set_ylabel("振幅")
axs[1].legend()
plt.show()

tempo&beats音频

图6 添加tempo的左右声道及音频

实时录制以及频率分析

# paura_lite:
# 一个超简单的命令行音频录制器,具有实时频谱可视化import numpy as np
import pyaudio
import struct
import scipy.fftpack as scp
import termplotlib as tpl
import os# 获取窗口尺寸
rows, columns = os.popen('stty size', 'r').read().split()buff_size = 0.2          # 窗口大小(秒)
wanted_num_of_bins = 40  # 要显示的频率分量数量# 初始化声卡进行录制:
fs = 8000
pa = pyaudio.PyAudio()
stream = pa.open(format=pyaudio.paInt16, channels=1, rate=fs,input=True, frames_per_buffer=int(fs * buff_size))while 1:  # 对于每个录制的窗口(直到按下Ctrl+C)# 获取当前块并将其转换为short整数列表,block = stream.read(int(fs * buff_size))format = "%dh" % (len(block) / 2)shorts = struct.unpack(format, block)# 然后进行归一化并转换为numpy数组:x = np.double(list(shorts)) / (2**15)seg_len = len(x)# 获取当前窗口的总能量并计算归一化因子# 用于可视化最大频谱图值energy = np.mean(x ** 2)max_energy = 0.02  # 条形设置为最大的能量max_width_from_energy = int((energy / max_energy) * int(columns)) + 1if max_width_from_energy > int(columns) - 10:max_width_from_energy = int(columns) - 10# 获取FFT的幅度和相应的频率X = np.abs(scp.fft(x))[0:int(seg_len/2)]freqs = (np.arange(0, 1 + 1.0/len(X), 1.0 / len(X)) * fs / 2)# ... 并重新采样为固定数量的频率分量(用于可视化)wanted_step = (int(freqs.shape[0] / wanted_num_of_bins))freqs2 = freqs[0::wanted_step].astype('int')X2 = np.mean(X.reshape(-1, wanted_step), axis=1)# 将(频率,FFT)作为水平直方图绘制:fig = tpl.figure()fig.barh(X2, labels=[str(int(f)) + " Hz" for f in freqs2[0:-1]],show_vals=False, max_width=max_width_from_energy)fig.show()# 添加足够多的新行以清除屏幕在下一次迭代中:print("\n" * (int(rows) - freqs2.shape[0] - 1))

频谱

图7 实时录制并获取频谱直方图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/208406.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AST反混淆实战|hcaptcha验证码混淆js还原分析

关注它&#xff0c;不迷路。 本文章中所有内容仅供学习交流&#xff0c;不可用于任何商业用途和非法用途&#xff0c;否则后果自负&#xff0c;如有侵权&#xff0c;请联系作者立即删除&#xff01; 1.实战地址 https://newassets.hcaptcha.com/c/bc8c0a8/hsw.js 将上面…

SPASS-ARIMA模型

基本概念 在预测中,对于平稳的时间序列,可用自回归移动平均(AutoRegres- sive Moving Average, ARMA)模型及特殊情况的自回归(AutoRegressive, AR)模型、移动平均(Moving Average, MA)模型等来拟合,预测该时间序列的未来值,但在实际的经济预测中,随机数据序列往往…

【网络奇缘】- 计算机网络|性能指标|体系结构

&#x1f308;个人主页: Aileen_0v0&#x1f525;系列专栏: 一见倾心,再见倾城 --- 计算机网络~&#x1f4ab;个人格言:"没有罗马,那就自己创造罗马~" 目录 温故而知新 计算机网络性能指标 时延 时延带宽积 往返时延RTT 访问百度​编辑 访问b站 访问谷歌 …

CSS特效016:天窗扬起合上的效果

CSS常用示例100专栏目录 本专栏记录的是经常使用的CSS示例与技巧&#xff0c;主要包含CSS布局&#xff0c;CSS特效&#xff0c;CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点&#xff0c;CSS特效主要是一些动画示例&#xff0c;CSS花边是描述了一些CSS…

Mac自带的看图如何连续查看多张图片

一、问题 mac看访达里的图片时&#xff0c;双击打开一张图片&#xff0c;然后按上下左右键都没法切换到另外的图片。而且也没找到像window一样单击缩略图可以看到预览图。其实是自己不懂得怎么使用&#xff0c;哈哈哈&#x1f602; 二、方法 2.1、图标方式 可以看到缩略图&a…

分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析-改进蜣螂算法优化最小二乘支持向量机的分类预测

分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析-改进蜣螂算法优化最小二乘支持向量机的分类预测 目录 分类预测 | Matlab实现KPCA-IDBO-LSSVM基于核主成分分析-改进蜣螂算法优化最小二乘支持向量机的分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.多特…

2019年12月 Scratch(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 怎样修改图章的颜色? A:只需要一个数字来设置颜色 B:设置RGB的值 C:在画笔中设置颜色、饱和度、亮度 D:在外观中设置或修改角色颜色特效 答案:D 在外观中设置或修改角色颜色特…

前缀和及差分数组

前缀和 原数组x0x1x2x3x4x5前缀和数组x0x0x1x0x1x2x0x1x2x3x0x1x2x3x4x0x1x2x3x4x5前缀和数组代数形式x0’x1’x2’x3’x4’x5’ 计算原数组某区间的和 sum[x1,x2,x3] 利用前缀和计算 x3-x0 x0x1x2x3-x0 x1x2x3 差分数组 x0x1x2x3x4x5原数组x0x1x2x3x4x5差分数组x0x1-x0x…

C# Winform使用log4net记录日志

写在前面 Log4Net是从Java的log4j移植过来的&#xff0c;功能也与log4j类似&#xff0c;可以把日志信息输出到文件、数据库、控制台、Windows 事件日志、远程系统日志服务等不同的介质或目标。 Log4Net配置选项丰富灵活&#xff0c;并且可在运行时动态更新配置并应用&#xf…

『亚马逊云科技产品测评』活动征文|AWS 存储产品类别及其适用场景详细说明

授权声明&#xff1a;本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 Developer Centre, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 目录 前言、AWS 存储产品类别 1、Amazon Elastic Block Store (EBS) …

ABAP调用Https接口 Ssl证书导入

ABAP调用Https接口 Ssl证书导入 一、证书导入 谷歌浏览器打开对方系统URL地址&#xff0c;下载SSL Server certificate,步骤如下&#xff1a; 浏览器打开要导出certificate(证书)的网站&#xff0c;点击这个小锁的图标&#xff1a; 点击连接是安全的后面小播放按钮 点击证…

千云物流 - 使用k8s负载均衡openelb

openelb的介绍 具体根据官方文档进行安装官方文档,这里作为测试环境的安装使用. OpenELB 是一个开源的云原生负载均衡器实现,可以在基于裸金属服务器、边缘以及虚拟化的 Kubernetes 环境中使用 LoadBalancer 类型的 Service 对外暴露服务。OpenELB 项目最初由 KubeSphere 社区…