2023.11.22 -数据仓库的概念和发展

目录

https://blog.csdn.net/m0_49956154/article/details/134320307?spm=1001.2014.3001.5501

1经典传统数仓架构

2离线大数据数仓架构

3数据仓库三层

数据运营层,源数据层(ODS)(Operational Data Store)

数据仓库层(DW)(Data Warehouse)

数据应用层ADS(Application Data Service) 

事实表(Fact Table)

维表层(Dimension)

4数据仓库和数据库的区别(t数据库,a仓库)

 5.关系模型(ER模型+三范式)

E-R模型(Entity-relationship model)

5.1.三范式

概述:

一、3NF知识点

5.2反范式化

 概述


补充之前的 :2023.11-9 hive数据仓库,概念,架构,元数据管理模式

https://blog.csdn.net/m0_49956154/article/details/134320307?spm=1001.2014.3001.5501

1经典传统数仓架构

阶段一: 1991年 比尔-恩门(bill inmon)出版第一版数据仓库的书, 标志数据仓库概念的确立, 称为恩门模型
    主张自上而下的建设企业级数据仓库, 建设过程中需要满足三范式要求
    从分散异构的数据源 -> 数据仓库 -> 数据集市
    
    存在问题: 
        由于三范式的建模,导致在数据分析中数据易访问性和系统的性能均收到影响

阶段二: 拉尔夫·金博尔(ralph kimball)提出自下而上的建立数据仓库,整个过程中信息存储采用维度建模而非三范式
    从数据集市-> 数据仓库 -> 分散异构的数据源
    
    优点: 
        提出了维度建模新思路, 完全以数据分析便利性为前提建设, 推出了事实-维度模型
        以最终任务为导向, 需要什么, 我们就建立什么
    
    弊端:
        随着业务的发展, 导致数据集市越来越多, 出现多个数据集的数据混乱和不一致的情况

阶段三: 1998年比尔-恩门(bill inmon)推出全新的CIF架构, 核心将数仓架构划分为不同的层次以满足不同场景的需求
    如: ODS  DW  DA层等
    
    从而明确各个层次的任务分工, 避免原有数据混乱和不一致的问题
    
    而这种思想已经成为截止到今天的建设数据仓库的指南

2离线大数据数仓架构

    大数据中的数据仓库构建就是基于经典数仓架构而来,使用大数据中的工具来替代经典数仓中的传统工具,架构建设上没有根本区别

 项目架构图

 集群管理工具: Cloudera Manager
数据源: 业务系统的Mysql与SQLServer数据库; 
数据抽取: 使用DataX实现关系型数据库和大数据集群的双向同步; 
数据存储: HDFS 
计算引擎: Hive
交互查询引擎: Presto
OLAP: PG
数据可视化: Fine Report
调度系统: DolphinScheduler(海豚调度)

3数据仓库三层,四大特性

1- 面向主题:  分析什么  什么就是我们的主题
2- 集成性: 数据从各个数据源汇聚而来, 数据的结构都不一定一样
3- 非易失性(稳定性): 存储都是过去历史的数据, 不会发送变更, 甚至某些数据仓库都不支持修改操作
4- 时变性: 随着时间推移, 将最近发生的数据也需要放置到数据仓库中, 同时分析的方案也无法满足当前需求, 需要变更分析的手段
 

数据运营层,源数据层(ODS)(Operational Data Store)

数据运营层ODS(Operation Data Store) -也就是最接近数据源的一层,直接对接的数据源(如:业务库、埋点日志、消息队列等)。ODS数数仓的最底层。

该层是存储数量最大的、未经过太多处理的、最原数据始的一层。该层还起到一个数据备份的作用,比如特殊的行业,一般ODS层需要存储一年甚至多年,不过普通公司一般存储三个月到六个月。

一般情况下,在数据进入ODS层的时候,都会对数据做一些最基本的处理。例如:

  • 数据来源分区
  • 数据按照时间分区存储,一般按照天分区,也有一些公司按照年、月、日三级分区存储
  • 进行最基本的数据处理,如格式错误的丢弃、过滤掉关键信息丢失的数据。

注意:一般公司也会把以上的基本处理放到DWM层来进行。

数据仓库层(DW)(Data Warehouse)

  • DWD(Data WareHouse Detail) -数据细节层。该层与ODS层保持相同的数据颗粒度,区别在于,改成主要是对ODS层进行数据的清洗和规范化操作,比如说去除空数据、脏数据等。该层由于对数据处理的粒度比较细,一般情况下都是编写代码实现的。很多时候存储的是事实表、维度表和实体表。
  • DWM(Data WareHouse Middle) -数据中间层。该层主要是对DWD层做一些轻微的聚合操作,生成一些指标列的聚合结果表。
  • DWS(Data WareHouse Service) -数据服务层。该层是在DWM层基础之上,整合汇总成一个主题域的数据服务层,一般是宽表(具有多个列的表),该层为后续的业务查询、OLAP分析和数据分发提供支撑。

数据应用层ADS(Application Data Service) 

数据应用层ADS(Application Data Service) -该层主要为数据产品和数据分析提供数据支撑。一般会存放在ES、MySQL、Redis等数据库系统中,为应用系统提供数据,也可以存放在hive或者Druid中,供数据分析与数据挖掘使用,比如数据报表就是存在该层中。

事实表(Fact Table)

事实表是指存储有事实记录的表,比如系统日志、销售记录等。事实表的记录在不断地增长,比如电商的商品订单表,就是类似的情况,所以事实表的体积通常是远大于其他表。

维表层(Dimension)

维度表(Dimension Table)或维表,有时也称查找表(Lookup Table),是与事实表相对应的一种表;它保存了维度的属性值,可以跟事实表做关联,相当于将事实表上经常重复出现的属性抽取、规范出来用一张表进行管理。

4数据仓库和数据库的区别(t数据库,a仓库)

数据库与数据仓库的区别:实际讲的是OLTP与OLAP的区别
OLTP(On-Line Transaction Processin):叫联机事务处理,也可以称面向用户交易的处理系统,  主要面向用户进行增删改查

OLAP(On-Line Analytical Processing):叫联机分析处理,一般针对某些主题的历史数据进行分析 主要面向分析,支持管理决策。

数据仓库主要特征:面向主题的(Subject-Oriented )、集成的(Integrated)、非易失的(Non-Volatile)和时变的(Time-Variant)

数据仓库的出现,并不是要取代数据库,主要区别如下:

  1.     数据库是面向事务的设计,数据仓库是面向主题设计的。
  2.     数据库是为捕获数据而设计,数据仓库是为分析数据而设计
  3.     数据库一般存储业务数据,数据仓库存储的一般是历史数据。
  4.     数据库设计是尽量避免冗余,一般针对某一业务应用进行设计,比如一张简单的User表,记录用户名、密码等简单数据即可,符合业务应用,但是不符合分析。
  5.     数据仓库在设计是有意引入冗余,依照分析需求,分析维度、分析指标进行设计。

 5.关系模型(ER模型+三范式)

E-R模型(Entity-relationship model)

表示:
实体: 用矩形框表示。
属性: 实体的属性用椭圆框表示。
联系:实体间的联系用菱形框表示,并在连线上标明联系的类型,即1—1、1—n或m—n。

两个实体之间的联系
一对一(1:1):
在这里插入图片描述

一对多(1:n)
在这里插入图片描述

多对多(m:n)
在这里插入图片描述

5.1.三范式

概述:

在关系型数据库中,关于数据表设计的基本原则,规则就称为范式。可以理解为,一张数据表的设计结构需要满足的某种设计标准的级别。想要设计一个结构合理的关系型数据库,必须满足一定的范式(规则)。

范式的英文名称是Normal Form,简称NF。它是英国人E.F.codd(埃德加·弗兰克·科德)在上个世纪70年代提出关系数据库模型后总结出来的。范式是关系数据库理论的基础,也是我们在设计数据库结构过程中所要遵循的规则指导方法

1981年,科德因在关系型数据库方面的贡献获得了图灵奖。他也被誉为:“关系数据库之父”

3NF知识点

设计关系数据库时,遵从不同的规范要求,设计出合理的关系型数据库,这些不同的规范要求被称为不同的范式,各种范式呈递次规范,越高的范式数据库冗余越小。

根据数据库冗余的大小,目前关系型数据库有六种范式,各种范式呈递次规范,越高的范式数据库冗余越小。注意: 范式就是设计数据库的通用规范,一般遵循前三种范式即可

第一范式(1NF)

第二范式(2NF)

第三范式(3NF)

巴斯-科德范式(BCNF)

第四范式 ( 4NF)

第五范式(5NF,又称完美范式)

第一范式(1NF): 强调的是列的原子性,即列不能够再分成其他几列,不可再分解;。

第二范式(2NF): 满足 1NF的基础上,另外包含两部分内容,要求记录有惟一标识,即实体的惟一性

一是表必须有一个主键;

二是非主键字段必须间接或直接的依赖于主键

第三范式(3NF): 满足 2NF的基础上,3NF是对字段冗余性的约束,即任何字段不能由其他字段派生出来,它要求字段没有冗余。另外包含

非主键列必须直接依赖于主键,不能存在传递依赖。

即不能存在:非主键列 A 依赖于非主键列 B,非主键列 B 依赖于主键的情况。

5.2反范式化

 概述

有的时候不能简单按照规范要求设计数据表,因为有的数据看似冗余,其实对业务来说十分重要。这个时候,我们就要遵循业务优先的原则,首先满足业务需求,再尽量减少冗余

如果数据库中的数据量比较大,系统的UV和PV访问频次比较高,则完全按照MySQL的三大范式设计数据表,读数据时产生大量的关联查询,在一定程度上会影响数据库的读性能。如果我们想对查询效率进行优化,反范式优化也是一种优化思路。此时,可以通过在数据表中增加冗余字段提高数据库的读性能

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/208783.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

redis运维(十四) hash缓存案例

一 缓存案例 ① 需求 ② 个人理解 策略:不更新缓存,而是删除缓存大部分观点认为:1、做缓存不应该是去更新缓存,而是应该删除缓存2、然后由下个请求去缓存,发现不存在后再读取数据库,写入redis缓存 高并发场景下,到底先更新缓存还是先更…

ChatGPT/GPT4丨编程助手;AI画图;数据分析;科研/项目实现;提示词工程技巧;论文写作等

ChatGPT 在论文写作与编程方面也具备强大的能力。无论是进行代码生成、错误调试还是解决编程难题,ChatGPT都能为您提供实用且高质量的建议和指导,提高编程效率和准确性。此外,ChatGPT是一位出色的合作伙伴,可以为您提供论文写作的…

八、ffmpeg录制视频为yuv文件

前言 测试环境: ffmpeg的4.3.2自行编译版本windows环境qt5.12 图片的一些重要知识: RGB图片 位深度:每一个像素都会使用n个二进制位来存储颜色信息。每一个像素的颜色都是由红(Red)、绿(Green&#xff0…

java代码调用twitter-api用例实战

一、申请twitter开发者账号 首先先申请twitter开发者免费的API,要填写申请的内容,放心大胆地写,申请完,会提供免费的API接口。 以下是我申请到的三个免费API 申请完开始进行测试调用。 读官方文档账户认证那块:https…

Python基础教程: sorted 函数

嗨喽,大家好呀~这里是爱看美女的茜茜呐 sorted 可以对所有可迭代的对象进行排序操作, sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。 从新排序列表。 👇 👇 👇 更多精彩机密、教程…

【Mysql】[Err] 1293 - Incorrect table definition;

基本情况 SQL文件描述 /* Navicat MySQL Data TransferSource Server : cm4生产-200 Source Server Version : 50725 Source Host : 192.168.1.200:3306 Source Database : db_wmsTarget Server Type : MYSQL Target Server Version : 50725 File…

C语言指针相关练习题

​ C语言指针相关练习题 文章目录 C语言指针相关练习题题目一题目二题目三题目四题目五题目六题目七 题目一 #include <stdio.h> int main() {int a[5] { 1, 2, 3, 4, 5 };int *ptr (int *)(&a 1);printf( "%d,%d", *(a 1), *(ptr - 1));return 0; }…

C++ 问题 怎么在C++11标准语法中调用C++20的类

一. 问题 在工作中,因为一个算法功能需要跟别的部门对接,他们提供了该算法的头文件.h,静态库.lib,动态库.dll。但是头文件中使用了C++20才有的新特性,如#include等,而本地使用的vs2015开发环境,只支持C++11标准语法,这种情况下,该怎么把该算法集成到本地项目中呢? …

PCIE链路训练-状态机描述1

状态机描述 Config.linkwidth.start&#xff1a; 1. &#xff08;1&#xff09;Linkup 0 状态机没有执行链路宽度的升级&#xff08;upconfiguration of the Link width&#xff09;&#xff1a;那么tx会在所有active的dsp上发送TS1&#xff0c;其中link num为具体内容&a…

看不惯AI版权作品被白嫖!Stability AI副总裁选择了辞职,曾领导开发Stable Audio

近日&#xff0c;OpenAI的各种大瓜真是让人吃麻了。 而就在Sam Altmam被开除前两天&#xff0c;可能没太多人注意到Stability AI副总裁Newton—Rex因看不惯StabilityAI在版权保护上的行为选择辞职一事。 大模型研究测试传送门 GPT-4传送门&#xff08;免墙&#xff0c;可直接…

android11 申请所有文件访问权限

Android 11 引入了强制执行分区存储的限制&#xff0c;导致应用默认不能访问外部文件。 针对以前涉及较多文件的操作&#xff0c;可采用申请所有文件访问权限的方式来解决这一问题&#xff0c;实现方式如下。 &#xff08;虽然这样做安全性低&#xff0c;官方并不推荐这样&…

druid keepAlive 导致数据库连接数飙升

一.背景 应用在执行完某个复杂业务&#xff0c;主要包含20几个查询SQL的操作后&#xff0c;会导致数据库连接池一直升高 druid版本&#xff1a;1.2.11 druid配置文件&#xff1a; spring.datasource.druid.maxActive100 spring.datasource.druid.initialSize20 spring.datas…