缓存雪崩、击穿、穿透及解决方案_保证缓存和数据库一致性

文章目录

  • 缓存雪崩、击穿、穿透
    • 1.缓存雪崩
      • 造成缓存雪崩
        • 解决缓存雪崩
    • 2. 缓存击穿
      • 造成缓存击穿
      • 解决缓存击穿
    • 3.缓存穿透
      • 造成缓存穿透
      • 解决缓存穿透
  • 更新数据时,如何保证数据库和缓存的一致性?
    • 1. 先更新数据库?先更新缓存?
      • 解决方案
    • 2. Cache Aside策略
      • ① 先更新数据库,再删除缓存
        • 保证更新数据库、删除缓存都执行成功
      • ② 先删除缓存,再更新数据库
        • 解决方案

在这里插入图片描述

缓存雪崩、击穿、穿透

一般用户数据存储于磁盘,读写速度慢。

使用redis作为缓存,相当于数据缓存在内存,大大提高系统性能

redis作为缓存,就会有缓存异常的三个问题

1.缓存雪崩

在这里插入图片描述

缓存都设置了过期时间

造成缓存雪崩

  • 大量缓存数据在同一时间过期

  • redis故障宕机

    若此时有大量用户请求,无法在redis处理,都直接访问数据库 => 数据库压力骤增(严重造成数据库宕机) => 形成一系列连锁反应 => 整个系统崩溃

解决缓存雪崩

=> 大量缓存数据在同一时间过期时:

  1. 均匀设置过期时间(对缓存数据的过期时间加上随机数,保证数据不会在同一时间过期)

  2. 互斥锁(当业务线程在处理用户请求时,如果发现访问的数据不在redis里,加互斥锁,保证同一时间内只有一个请求来构建缓存(从数据库读取数据,再将数据更新到redis),当缓存构建完成后,再释放锁。)
    注:互斥锁设置超时时间,否则若出现请求发生意外阻塞,导致其他请求也一直拿不到锁

  3. 后台更新缓存(让缓存“永久有效”,将更新缓存的工作交由后台线程定时更新)
    当系统内存紧张时,有些缓存数据被“淘汰”,在“淘汰”和下次更新时间内,业务线程读取失败就以为是数据丢失,解决方法:

    1. 后台线程负责定时更新缓存,同时频繁地检测缓存是否失效,若失效,可进行构建缓存

      ​ 检测时间间隔不能太长,太长导致用户获取的数据是空值而不是真正的数据,检测时间间隔最好是毫秒级,用户体验一般

    2. 业务线程发现缓存数据失效后,通过消息队列发送一条消息通知后台线程更新缓存。后台线程收到消息后,更新前判断缓存是否存在,不存在则进行构建缓存。

      ​ 缓存更新及时,用户体验好

    **注:**后台更新缓存机制适合进行缓存预热(业务刚上线时,提前缓存数据,不是等待用户访问才来触发缓存构建)

=> Redis故障宕机时:

  1. 服务熔断或请求限流机制

    ​ 服务熔断:暂停业务应用对缓存服务的访问,直接返回错误,不再继续访问数据库,直到redis恢复正常。

    ​ 请求限流机制:只将少部分请求发送到数据库进行处理,再多的请求就在入口直接拒绝服务,等到Redis恢复正常 并把缓存预热完后。

  2. 构建redis缓存高可靠集群

    ​ 通过主从节点的方式构建,若redis缓存的主节点宕机,从节点可以切换成为主节点,继续提供缓存服务

2. 缓存击穿

造成缓存击穿

被频繁访问的热点数据过期,此时大量的请求访问该热点数据,直接访问数据库,数据库很容易被高并发的请求冲垮

缓存击穿可以认为是缓存雪崩的一个子集(对应于大量缓存数据在同一时间过期)

解决缓存击穿

  1. 互斥锁
  2. 不给热点数据设置过期时间,由后台异步更新缓存 / 在热点数据准备过期前,提前通知后台线程更新缓存以及重新设置过期时间

3.缓存穿透

对于缓存雪崩、击穿,数据仍然在数据库,一旦缓存恢复相应的数据,就可以减轻数据库的压力

而对于缓存穿透:

​ 用户访问的数据,既不在缓存中,也不在数据库中,导致请求在访问缓存时,发现缓存缺失,再去访问数据库,发现数据库也没有要访问的数据,没办法构建缓存来服务后续请求。当有大量的这样的请求时,数据库的压力骤增

造成缓存穿透

  • 业务误操作,缓存中数据和数据库数据都被误删除
  • 黑客恶意攻击,故意大量访问某些读取不存在数据的业务

解决缓存穿透

  1. 非法请求的限制

    判断请求参数是否含有非法值?请求字段是否存在?

  2. 缓存空值或默认值

    当线上业务发现缓存穿透时,针对查询的数据,在缓存中设置一个空值或默认值,后续请求可以从缓存中读取到数据,而不会继续查询数据库

  3. 使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在。

    写入数据库数据时,使用布隆过滤器做标记,当业务线程确认缓存失效后,可以通过查询布隆过滤器判断数据是否存在。(大量请求只会查询布隆过滤器和redis,而不会查询数据库)

注:布隆过滤器的实现

在这里插入图片描述

设此时有3个哈希函数,位图数组长度为8,数据库写入数据x:

将该数据x得到的三个哈希值 % 位图数据长度得到三个数组下标,填入1。

当业务线程查询数据是否存在于数据库时,查询 1、4、6下标的值是否为1,若有一个为0,则说明不存在

(存在哈希冲突,故若查询布隆过滤器说数据存在于数据库,此时数据不一定在数据库;但是查询到数据不存在时,数据一定不存在)

在这里插入图片描述
在这里插入图片描述

更新数据时,如何保证数据库和缓存的一致性?

1. 先更新数据库?先更新缓存?

在数据更新时,先更新数据库还是先更新缓存,都会存在并发问题,当两个请求并发更新同一条数据时,可能会出现缓存和数据库中数据不一致的现象。

解决方案

  • 更新缓存之前加分布式锁,保证同一时间只运行一个请求更新缓存,但对写入性能造成影响
  • 更新完缓存后,给缓存加上较短的过期时间,即使不一致,但也会很快过期

2. Cache Aside策略

旁路缓存策略: 在更新数据时,不更新缓存,更新数据库,删除缓存, 当读取数据发现缓存中无该数据时,再从数据库中读取数据,并且写入缓存。

(删除缓存,不更新缓存是懒加载思想的应用)

分为读策略、写策略

  • 写策略
    • 更新数据库中的数据
    • 删除缓存中的数据
  • 读策略
    • 若读取的数据命中缓存,则直接返回数据
    • 若读取的数据没有命中缓存,则从数据库中读取数据,再将该数据写入缓存,并且返回给用户

例:请求A读取数据,请求B更新数据

在这里插入图片描述

此时数据库中为21,缓存中为20

该情况出现概率不高,因为缓存的写入通常远远快于数据库的写入

① 先更新数据库,再删除缓存

先更新数据库,再删除缓存 可以保证“数据一致性”,并且对缓存加上过期时间,可以保证最终一致性

问题:

  • 先更新数据库,再删除缓存会导致缓存命中率降低。

    ​ 若对缓存命中率有要求,可以采用更新数据库+更新缓存,解决方案见1.

  • 这种方法保证数据一致性的前提是 更新数据库和删除缓存都能正常执行成功。

    (删除缓存失败时,可能出现缓存中为旧数据,数据库中为新数据)

    保证更新数据库、删除缓存都执行成功

    采用异步缓存,保证第二个操作执行成功

    • 重试机制 => 引入消息队列,将删除缓存操作的数据加入消息队列,由消费者操作数据
      • 如果删除缓存失败,从消息队列重新读取需要删除的数据,再次删除缓存(若多次删除失败,需要向业务层发送报错信息)
      • 如果删除缓存成功,把数据从消息队列移除,避免重复操作
    • 订阅 MySQL binlog,再操作缓存
      • 先更新数据库,再删除缓存,当更新数据库成功,就会产生一条变更日志,记录在binlog里。于是可以订阅binlog日志,拿到具体要操作的数据,再执行缓存删除。
      • Canal模拟MySQL的主从复制的交互协议,把自己伪装成从节点,向MySQL主节点发送dump请求,MySQL收到请求后,推送binlog给Canal,Canal解析Binlog字节流后,转换为便于读取的结构化数据,供下游程序订阅使用
        • 在这里插入图片描述

② 先删除缓存,再更新数据库

出现并发问题,造成缓存、数据库数据不一致

解决方案

延迟双删

  1. 删除缓存
  2. 更新数据库
  3. 睡眠
  4. 再删除缓存

请求A在睡眠时,B能够完成读取数据库数据,并把缺失数据写入缓存,A睡眠完后删除缓存。

请求A的睡眠时间 > 请求B的从数据库读取数据+写入缓存的时间

该方案尽可能保持一致性,建议采用先更新数据库,再删除缓存

小林coding图解Redis — 七

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/210003.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

赛桨在结构领域全新探索:机理驱动的无网格结构拓扑优化

自PaddleScience(赛桨) V1.0于2023年8月正式发布以来,其支持数据和机理驱动的AI for Science求解模式备受工程领域的欢迎。赛桨不仅提供了包括流体、结构、气象等多个领域的基础网络模型,还提供了丰富的生态共建案例。截至目前&am…

【数字化转型方法论读书笔记】-数据中台角色解读

一千个读者,就有一千个哈姆雷特。同样,数据中台对于企业内部不同角色的价值也不同,下面分别从董事长、CEO、 CTO/CIO、IT 架构师、数据分析师这 5 个角色的视角详细解读数据中台。 1、董事长视角下的数据中台 在数字经济时代,企业…

电脑自动删除文件怎么办?如何恢复?

在数字化时代,电脑已经成为人们不可或缺的工具之一。然而,由于各种原因,我们有时会遇到电脑自动删除文件的情况,这给我们的工作和生活带来了很多不便。那么,当电脑自动删除文件时,我们应该如何处理呢&#…

单元测试-java.lang.NullPointerException

报错信息 java.lang.NullPointerException 空指针异常 空对象引用 来源 对Controller层进行单元测试,解决完Spring上下文报错后继续报错。 解决 在测试方法执行前要为字段完成对象的注入,否则就报空指针异常。 测试例子 public class SysUserContr…

微信开放平台Android平台应用签名怎么填写

winR 输入cmd 进到本地签名文件的目录下 输入 keytool -list -v -keystore <keystore文件路径> -alias <别名>请将 <keystore文件路径> 替换为您的密钥库文件&#xff08;通常是 .jks 或 .keystore 文件&#xff09;的路径&#xff0c;而 <别名> 则是…

优思学院|2024年质量管理的大趋势

2023年我们已经顺利度过了整年的大部分时间&#xff0c;2024年质量管理的趋势和问题在全球范围内都已经引起了关注&#xff0c;或者仍然是企业导航的首要任务。 1. 通货膨胀与质量管理 2023年&#xff0c;全球范围内通货膨胀和严峻的经济状况成为企业最关心的问题之一。尽管物…

【VSCode】VSCode 使用

目录 文章目录 目录插件配置设置代码不显示 git 提示 "xxx months ago | 1 author"设置打开项目不自动选择 CMakeLists 插件 以下插件为 C 开发偏好设置。 C/CCMakeCMake ToolsGitLensRemote DevelopmentRemote Explorer 配置 设置代码不显示 git 提示 “xxx mon…

关于js的find的基本用法

Array.prototype.find() 是 JavaScript 的一个数组方法&#xff0c;它被用来在数组中查找一个符合条件的元素。一旦找到第一个符合条件的元素, find() 会立即返回这个元素的值&#xff0c;否则返回 undefined。 以下是 find() 方法的基本语法&#xff1a; arr.find(callback(el…

pcie-2-rj45速度优化

背景: 目前用iperf3打流传输速率达不到要求,千兆实际要求跑到800M以上: 优化方案: 1.优化defconfig: 首先编译user版本验证看是否正常 debug版本关闭CONFIG_SLUB_DEBUG_ON宏控。 2.找FAE ,通过更换驱动,或者更新驱动来优化 3.绑定大核: 以8125网卡为例,udp…

kolla 安装多节点openstack kolla部署openstack

Kolla 概述&#xff1a; Kolla是OpenStack下用于自动化部署的一个项目&#xff0c;它基于docker和ansible来实现&#xff0c;其中docker主要负责镜像制作和容器管理&#xff0c;ansible主要负责环境的部署和管理。Kolla实际上分为两部分&#xff1a;Kolla部分提供了生产环境级…

开发板启动进入系统以后再挂载 NFS 文件系统, 这里的NFS文件系统是根据正点原子教程制作的ubuntu_rootfs

如果是想开发板启动进入系统以后再挂载 NFS 文件系统&#xff0c;开发板启动进入文件系统&#xff0c;开发板和 ubuntu 能互相 ping 通&#xff0c;在开发板文件系统下新建一个目录 you&#xff0c;然后执行如下指令进行挂载&#xff1a; mkdir mi mount -t nfs -o nolock,nfsv…

BootStrap【表格二、基础表单、被支持的控件、表单状态】(二)-全面详解(学习总结---从入门到深化)

目录 表格二 表单_基础表单 表单_被支持的控件 表单_表单状态 表格二 紧缩表格 通过添加 .table-condensed 类可以让表格更加紧凑&#xff0c;单元格中的内补&#xff08;padding&#xff09;均会减半 <table class"table table-condensed table-bordered"…