计算方法 期末总结

思维导图
在这里插入图片描述

绪论

算法的性质:
有穷性、确切性、有输入输出、可行性
算法的描述方法:
自然语言、伪代码、流程图、N-S流程图
算法设计思想:

  • 化大为小的缩减技术:二分法
  • 化难为易的校正技术:开方法
  • 化粗为精的松弛技术:加权平均 超松弛 割圆术

误差来源:

  • 模型/描述误差
  • 观测误差
  • 舍入如茶
  • 初值误差

计算方法只研究后两类误差

误差的度量:
绝对误差 e ( x ∗ ) = x − x ∗ e(x^*)=x-x^* e(x)=xx
绝对误差限 ∣ e ( x ∗ ) ∣ = ∣ x − x ∗ ∣ < ε |e(x^*)|=|x-x^*|<\varepsilon e(x)=xx<ε
相对误差 e r ( x ∗ ) = e ( x ∗ ) / x ≈ e ( x x ) / x ∗ e_r(x^*)=e(x^*)/x\approx e(x^x)/x^* er(x)=e(x)/xe(xx)/x
相对误差限
有效数字:
x ∗ = 1 0 m ∗ x 1 x 2 x 3 . . . . x p x^*=10^m *x_1x_2x_3....x_p x=10mx1x2x3....xp
∣ e ∣ < = 0.5 ∗ 1 0 m − n |e|<=0.5*10^{m-n} e<=0.510mn,则具有n位有效数字
x ∗ x^* x准确到末位时,称有效数

选择算法原则:

  • 避免相近的数相减
  • 避免很小的数作分母
  • 避免大数淹没小数
  • 选用稳定性好的算法

插值

用多项式替代真实函数,该多项式存在且唯一(克莱姆法则证明)

拉格朗日插值

L n ( x ) = ∑ i = 0 n φ i ( x ) y i = ∑ i = 0 n ( ∏ j = 0 , j ! = i n x − x j x i − x j ) y i L_n(x)=\sum_{i=0}^n\varphi _i(x)y_i=\sum_{i=0}^n( {\textstyle \prod_{j=0,j!=i}^{n}\frac{x-x_j}{x_i-x_j} } )y_i Ln(x)=i=0nφi(x)yi=i=0n(j=0,j!=inxixjxxj)yi
其中, φ ( x ) \varphi(x) φ(x)是插值基函数
本质上拉格朗日插值函数是加权和
特点:

  • 插值点需要等距
  • 新点进入需要重新计算基函数
  • 高次插值的精度不一定高,可能产生龙格现象

牛顿插值

差商:
零阶差商: f ( x i ) = y i f(x_i)=y_i f(xi)=yi
一阶差商: f ( x i , x j ) = f ( x j ) − f ( x i ) x j − x i f(x_i,x_j)=\frac{f(x_j)-f(x_i)}{x_j-x_i} f(xi,xj)=xjxif(xj)f(xi)
二阶差商: f ( x i , x j , x k ) = f ( x j , x k ) − f ( x i , x j ) x k − x i f(x_i,x_j,x_k)=\frac{f(x_j,x_k)-f(x_i,x_j)}{x_k-x_i} f(xi,xj,xk)=xkxif(xj,xk)f(xi,xj)
可用表格法计算差商,对角线上的是系数
牛顿插值多项式:
p n ( x ) = f ( x 0 ) + f ( x 0 , x 1 ) ( x − x 0 ) + . . . + f ( x 0 , x 1 , . . . , x n ) ( x − x 0 ) ( x − x 1 ) . . . ( x − x n − 1 ) p_n(x)=f(x_0)+f(x_0,x_1)(x-x_0)+...+f(x_0,x_1,...,x_n)(x-x_0)(x-x_1)...(x-x_{n-1}) pn(x)=f(x0)+f(x0,x1)(xx0)+...+f(x0,x1,...,xn)(xx0)(xx1)...(xxn1)
特点:

  • 和拉格朗日插值结果一致
  • 不需要重新计算基函数
  • 不需要插值点等距

埃米尔特Hermite插值(切触插值)

两点三次插值:
p 3 ( x ) = y 0 φ 0 ( x ) + y 1 φ 1 ( x ) + y 0 ′ ψ 0 ( x ) + y 1 ′ ψ 1 ( x ) p_3(x)=y_0\varphi_0(x)+y_1\varphi_1(x)+y_0'\psi _0(x)+y_1'\psi _1(x) p3(x)=y0φ0(x)+y1φ1(x)+y0ψ0(x)+y1ψ1(x)
其中 φ 0 ( x ) = ( 1 + 2 x − x 0 x 1 − x 0 ) ( x − x 1 x 0 − x 1 ) 2 \varphi_0(x)=(1+2\frac{x-x_0}{x_1-x_0} )(\frac{x-x_1}{x_0-x_1} )^2 φ0(x)=(1+2x1x0xx0)(x0x1xx1)2
φ 1 ( x ) = ( 1 + 2 x − x 1 x 0 − x 1 ) ( x − x 0 x 1 − x 0 ) 2 \varphi_1(x)=(1+2\frac{x-x_1}{x_0-x_1} )(\frac{x-x_0}{x_1-x_0} )^2 φ1(x)=(1+2x0x1xx1)(x1x0xx0)2
ψ 0 ( x ) = ( x − x 0 ) ( x − x 0 x 0 − x 1 ) 2 \psi_0(x)=(x-x_0)(\frac{x-x_0}{x_0-x_1} )^2 ψ0(x)=(xx0)(x0x1xx0)2
ψ 1 ( x ) = ( x − x 1 ) ( x − x 0 x 1 − x 0 ) 2 \psi_1(x)=(x-x_1)(\frac{x-x_0}{x_1-x_0} )^2 ψ1(x)=(xx1)(x1x0xx0)2
特点:

  • 具有导数值

分段插值

大一统的方法,在段内,想用哪种插就用哪种插!

数值积分

正统方法是牛顿-莱布尼茨公式,但是我们又算不出来,不想算,咋办呢

代数精度

一个公式,对于不超过m次的任意多项式都准确,但对m+1次有不准确的,那么具有m阶代数精度。
简化一下,用1,x, x 2 x^2 x2往里带就行

机械求积

∫ a b f ( x ) d x = ( b − a ) ∑ i = 0 n λ i f ( x i ) \int_{a}^{b} f(x)dx=(b-a)\sum_{i=0}^n\lambda_if(x_i) abf(x)dx=(ba)i=0nλif(xi) 加权和

梯形求积公式

∫ a b f ( x ) d x = ( b − a ) / 2 ( f ( a ) + f ( b ) ) \int_{a}^{b} f(x)dx=(b-a)/2 (f(a)+f(b)) abf(x)dx=(ba)/2(f(a)+f(b))

牛顿-科特斯公式

将求积区间[a,b]划分为n等分,用等分点构造拉格朗日插值,用L(x)代替f(x)

n求积系数1求积系数2求积系数3求积系数4求积系数5
11/21/2
21/64/61/6
31/83/83/81/8
47/9016/452/1516/457/90

其中n=1为梯形求积公式,n=2为辛普森公式,n=4为科特四公式
奇数的代数精度和前一个偶数一样,所以正常人没人用奇数的
代数精度分别为1,3,3,5

复化求积公式

跟分段插值一样
复化梯形: I = b − a 2 n ( f ( a ) + 2 ∑ i = 1 n − 1 f ( x i ) + f ( b ) ) I=\frac{b-a}{2n}(f(a)+2 {\textstyle \sum_{i=1}^{n-1}}f(x_i)+f(b)) I=2nba(f(a)+2i=1n1f(xi)+f(b))
复化辛普森公式: I = b − a 6 n ( f ( a ) + 4 ∑ i = 0 n − 1 f ( x i + 1 / 2 ) + 2 ∑ i = 1 n − 1 f ( x i ) + f ( b ) ) I=\frac{b-a}{6n}(f(a)+4 {\textstyle \sum_{i=0}^{n-1}}f(x_{i+1/2})+2{\textstyle \sum_{i=1}^{n-1}f(x_i)}+f(b)) I=6nba(f(a)+4i=0n1f(xi+1/2)+2i=1n1f(xi)+f(b))
复化柯特斯公式: I = b − a 90 n ( f ( a ) + 32 ∑ i = 0 n − 1 f ( x i + 1 / 4 ) + 12 ∑ i = 0 n − 1 f ( x i + 1 / 2 ) + 32 ∑ i = 0 n − 1 f ( x i + 3 / 4 ) + 14 ∑ i = 1 n − 1 f ( x i ) + 7 f ( b ) ) I=\frac{b-a}{90n}(f(a)+32 {\textstyle \sum_{i=0}^{n-1}}f(x_{i+1/4})+12 {\textstyle \sum_{i=0}^{n-1}}f(x_{i+1/2})+32 {\textstyle \sum_{i=0}^{n-1}}f(x_{i+3/4})+14 {\textstyle \sum_{i=1}^{n-1}}f(x_{i})+7f(b)) I=90nba(f(a)+32i=0n1f(xi+1/4)+12i=0n1f(xi+1/2)+32i=0n1f(xi+3/4)+14i=1n1f(xi)+7f(b))

龙贝格算法(kao)?

T 1 = ( b − a ) / 2 ( f ( a ) + f ( b ) ) T_1=(b-a)/2 (f(a)+f(b)) T1=(ba)/2(f(a)+f(b)) 一个梯形
T 2 n = 1 / 2 T 1 + 2 / h ∑ i = 0 n − 1 f ( x i + 1 / 2 ) T_{2n}=1/2 \ T_1+2/h\ {\textstyle \sum_{i=0}^{n-1}}f(x_{i+1/2}) T2n=1/2 T1+2/h i=0n1f(xi+1/2)
S n = 4 / 3 T 2 n − 1 / 3 T n S_n=4/3\ T_{2n}-1/3 \ T_n Sn=4/3 T2n1/3 Tn
C n = 16 / 15 S 2 n − 1 / 15 S n C_n=16/15\ S_{2n}-1/15 \ S_n Cn=16/15 S2n1/15 Sn
R n = 64 / 63 C 2 n − 1 / 63 C n R_n=64/63\ C_{2n}-1/63 \ C_n Rn=64/63 C2n1/63 Cn

高斯公式

求积节点不是等分,而是一些特殊点
∫ a b f ( x ) d x = b − a 2 ∫ − 1 1 g ( t ) d t \int_{a}^{b}f(x)dx=\frac{b-a}{2}\int_{-1}^{1}g(t)dt abf(x)dx=2ba11g(t)dt,见资料积分区间转换
一点: ∫ − 1 1 f ( x ) d x ≈ 2 f ( 0 ) \int_{-1}^{1}f(x)dx\approx 2f(0) 11f(x)dx2f(0)
两点: ∫ − 1 1 f ( x ) d x ≈ f ( − 1 3 ) + f ( 1 3 ) \int_{-1}^{1}f(x)dx\approx f(-\frac{1}{\sqrt{3} } )+f(\frac{1}{\sqrt{3} }) 11f(x)dxf(3 1)+f(3 1)
三点: ∫ − 1 1 f ( x ) d x ≈ 5 9 f ( − 3 5 ) + 8 9 f ( 0 ) + 5 9 f ( 3 5 ) \int_{-1}^{1}f(x)dx\approx \frac{5}{9 }f(-\sqrt\frac{3}{{5} } )+\frac{8}{9} f(0)+\frac{5}{9} f(\sqrt{\frac{3}{5} } ) 11f(x)dx95f(53 )+98f(0)+95f(53 )
一般积分区间的高斯公式

方程求根的迭代法

x k + 1 = φ ( x k ) x_{k+1}=\varphi(x_k) xk+1=φ(xk)
导数的绝对值<=1时,收敛

开方算法

x 0 > 0 x_0>0 x0>0
x k + 1 = 1 2 ( x k + a x k ) x_{k+1}=\frac{1}{2}(x_k+\frac{a}{x_k}) xk+1=21(xk+xka)

牛顿法(重点)

泰勒展开前两项,得到 x k + 1 = x k − f ( x k ) f ′ ( x k ) x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)} xk+1=xkf(xk)f(xk)
使用条件:

  • 介值定理
  • f’(x)!=0
  • f’'(x)存在且不变号
  • x0选点必须使得f’'(x)f(x0)>0

如此才能收敛

收敛速度

e k + 1 e k p \frac{e_{k+1}}{e_k^p} ekpek+1->C 则迭代过程是p阶收敛的
牛顿法为平方收敛

牛顿下山法

要求|函数值|单调下降
得到 x k + 1 = x k − λ f ( x k ) f ′ ( x k ) x_{k+1}=x_k-\lambda \frac{f(x_k)}{f'(x_k)} xk+1=xkλf(xk)f(xk)
0 < λ < 1 0<\lambda<1 0<λ<1,称下山因子,逐步探索下山因子,从1开始,如果有一步始终找不到,则重选初值

(单点)弦截法

f ′ ( x k ) ≈ f ( x k ) − f ( x 0 ) x k − x 0 f'(x_k)\approx \frac{f(x_k)-f(x_0)}{x_k-x_0} f(xk)xkx0f(xk)f(x0),用割线代替切线

快速/两点 弦截法

需要两个初值x0和x1

埃特金迭代公式

x k + 1 ˉ = φ ( x k ) \bar{x_{k+1}}=\varphi (x_k) xk+1ˉ=φ(xk) 牛顿一次
x k + 1 ~ = φ ( x k + 1 ˉ ) \tilde{x_{k+1}}=\varphi (\bar{x_{k+1}} ) xk+1~=φ(xk+1ˉ) 再牛顿一次
x k + 1 = x k + 1 ~ − ( x k + 1 ~ − x k + 1 ˉ ) 2 x k + 1 ~ − 2 x k + 1 ˉ + x k x_{k+1}=\tilde{x_{k+1}}-\frac{(\tilde{x_{k+1}}-\bar{x_{k+1}})^2}{\tilde{x_{k+1}}-2\bar{x_{k+1}}+x_k} xk+1=xk+1~xk+1~2xk+1ˉ+xk(xk+1~xk+1ˉ)2 奇怪的加权!

线性方程组的迭代法

Jacobi

x k + 1 = − D − 1 ( L + U ) x + D − 1 b x_{k+1}=-D^{-1}(L+U)x+D^{-1}b xk+1=D1(L+U)x+D1b
移过去,用xk算

Gauss-Seidel

x k + 1 = − ( D + L ) − 1 U x + ( D + L ) − 1 b x_{k+1}=-(D+L)^{-1}Ux+(D+L)^{-1}b xk+1=(D+L)1Ux+(D+L)1b
移过去,用 x k + 1 x_{k+1} xk+1

收敛判断

Jacobi迭代法和Gauss-Seidel迭代法的收敛性

范数

向量的1范数=x绝对值之和
2范数=欧氏距离
无穷范数=绝对值的最大值

矩阵的1范数是列范数,对每列的绝对值求和,找个最大的列
2范数是谱范数 ∣ ∣ A ∣ ∣ 2 = λ m a x ( A T A ) ||A||_2=\sqrt{\lambda_{max}(A^TA)} ∣∣A2=λmax(ATA)
无穷范数是行范数,也许因为它是横着的吧(?

谱半径:A绝对值最大的特征值
对任意矩阵范数,谱半径都<=范数,所以范数要是<1,迭代法是不是就必然收敛了呢~

线性方程组的直接法

高斯消元法

化成上下三角形,这也要说?

列主元消元法

换行再消元

矩阵分解法

可以分解为LU 一个下三角和一个上三角的乘积,其中一个是单位的

  • Doolittle分解法
    先横着算u,再竖着算l
  • crout分解法
    先竖着算l,再横着算u

有公式但是记不住,现推吧

  • 平方根法分解 A= L L T LL^T LLT 有公式
  • Cholesky分解 正定矩阵分解为 A = L D L T A=LDL^T A=LDLT代价<平方根
  • 追赶法 三对角矩阵适用 消元+回代

常微分方程的差分法

欧拉格式

向前的 y ( x n + 1 ) ≈ y ( x n ) + h f ( x n , y ( x n ) ) y(x_{n+1})\approx y(x_n)+hf(x_n,y(x_n)) y(xn+1)y(xn)+hf(xn,y(xn))
向后的(隐式) y ( x n + 1 ) ≈ y ( x n ) + h f ( x n + 1 , y ( x n + 1 ) ) y(x_{n+1})\approx y(x_n)+hf(x_{n+1},y(x_{n+1})) y(xn+1)y(xn)+hf(xn+1,y(xn+1))
两步 y ( x n + 1 ) ≈ y n − 1 + 2 h f ( x n , y ( x n ) ) y(x_{n+1})\approx y_{n-1}+2hf(x_{n},y(x_{n})) y(xn+1)yn1+2hf(xn,y(xn)) 无法直接启动
梯形格式 y ( x n + 1 ) ≈ h 2 ( f ( x n , y ( x n ) ) + f ( x n + 1 , y ( x n + 1 ) ) y(x_{n+1})\approx \frac{h}{2}(f(x_{n},y(x_{n}))+f(x_{n+1},y(x_{n+1})) y(xn+1)2h(f(xn,y(xn))+f(xn+1,y(xn+1))这也是隐式的,也没法用(二阶)

改进的欧拉格式

二阶代数精度
先预报,再校正
预报值 y ( x n + 1 ) ˉ = y ( x n ) + h f ( x n , y ( x n ) ) \bar{y(x_{n+1})}= y(x_n)+hf(x_n,y(x_n)) y(xn+1)ˉ=y(xn)+hf(xn,y(xn))
校正值 y ( x n + 1 ) ≈ y ( x n ) + h 2 ( f ( x n , y ( x n ) ) + f ( x n + 1 y ( x n + 1 ) ˉ ) y(x_{n+1})\approx y(x_n)+\frac{h}{2}(f(x_{n},y(x_{n}))+f(x_{n+1}\bar{y(x_{n+1})}) y(xn+1)y(xn)+2h(f(xn,y(xn))+f(xn+1y(xn+1)ˉ)
可以简化表示为:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/211565.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

首批!创邻科技入选《图数据库金融应用场景优秀案例》

11月11日&#xff0c;“全球金融科技中心网络年会”在第三届全球金融科技大会暨第五届成方金融科技论坛上成功在京举办。会上&#xff0c;北京前沿金融监管科技研究院发布了基于国际标准组织——国际关联数据基准委员会&#xff08;LDBC&#xff09;的《图数据库金融应用场景优…

【Python入门篇】——Python中循环语句(for循环的基础语法)

作者简介&#xff1a; 辭七七&#xff0c;目前大一&#xff0c;正在学习C/C&#xff0c;Java&#xff0c;Python等 作者主页&#xff1a; 七七的个人主页 文章收录专栏&#xff1a; Python入门&#xff0c;本专栏主要内容为Python的基础语法&#xff0c;Python中的选择循环语句…

如何解决tinder注册失败的问题?

tinder创立在2012年&#xff0c;是一款海外热门的交友软件。2020年&#xff0c;Tinder拥有620万用户和7500万月活跃用户。截至2021年&#xff0c;Tinder在全球范围内的匹配记录超过650亿。已成为全球最受欢迎的约会软件之一。 目前tinder暂时未对中国大陆开发使用&#xff0c;…

机器学习之危险品车辆目标检测

危险品的运输涉及从离开仓库到由车辆运输到目的地的风险。监控事故、车辆运动动态以及车辆通过特定区域的频率对于监督车辆运输危险品的过程至关重要。 在线工具推荐&#xff1a; 三维数字孪生场景工具 - GLTF/GLB在线编辑器 - Three.js AI自动纹理化开发 - YOLO 虚幻合成数…

大厂面试官最爱问的20道Mysql面试题

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…

ChatGPT规模化服务的经验与教训

2022年11月30日&#xff0c;OpenAI发布ChatGPT&#xff0c;以很多人未曾预料的速度迅速走红。与此同时&#xff0c;由于短时间内用户量的暴涨&#xff0c;导致服务器过载&#xff0c;迫使OpenAI停止新用户的注册。 ChatGPT发布这一年&#xff0c;同样的情景发生了好几次。在最近…

app小程序定制的重点|软件定制开发|网站搭建

app小程序定制的重点|软件定制开发|网站搭建 App小程序定制开发是近年来快速发展的一项技术服务&#xff0c;随着移动互联网的普及和用户需求的不断升级&#xff0c;越来越多的企业和个人开始关注和需求定制化的小程序开发。那么&#xff0c;对于app小程序定制开发来说&#xf…

OpenStack云计算平台-启动一个实例

目录 一、创建虚拟网络 ​二、创建m1.nano规格的主机 三、生成一个键值对 四、增加安全组规则 ​五、启动一个实例 1、确定实例选项 2、创建实例 3、使用虚拟控制台访问实例 4、验证能否远程访问实例 一、创建虚拟网络 下面的说明和框图使用示例IP 地址范围。你必须依…

Selenium介绍及基本使用方法

Selenium是一个开源、免费、简单、灵活&#xff0c;对Web浏览器支持良好的自动化测试工具&#xff0c;在UI自动化、爬虫等场景下是十分实用的&#xff0c;能够熟练掌握并使用Selenium工具可以大大的提高效率。 Selenium简介 Selenium支持多平台、多浏览器、多语言去实现自动化…

机器学习实战-第4章 基于概率论的分类方法: 朴素贝叶斯

朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。 贝叶斯理论 & 条件概率 贝叶斯理论 …

String 、StringBuffer 和 StringBuilder 的区别?

String 使用 String 声明一个字符串的时候&#xff0c;该字符串会存放在堆中的字符串常量池中。因为在java中所有的String 都是以常量表示&#xff0c;且由 final 修饰&#xff0c;因此在线程池中它的线程是安全的 且 不可变的 。每个 String 在被创建后就不再发生任何变化。 …

保姆级 Keras 实现 YOLO v3 一

保姆级 Keras 实现 YOLO v3 一 一. YOLO v3 总览二. 特征提取网络特征提取网络代码实现 三. 特征融合特征融合代码实现 四. 网络输出模型输出代码实现 五. 网络模型代码实现 如果要给 YOLO 目标检测算法一个评价的话, 就是快和准, 现在已经到了 v8, 但是我为什么还要写 v3 呢?…