OpenCV实现图像噪声、去噪基本方法

一、噪声分类

1、高斯噪声

指服从高斯分布(正态分布)的一类噪声,其产生的主要原因是由于相机在拍摄时视场较暗且亮度不均匀造成的,同时相机长时间工作使得温度过高也会引起高斯噪声,另外电路元器件白身噪声和互相影响也是造成高斯噪声的重要原因之一。

概率密度函数(PDF)如下:

初始图片:

注意加噪声时,不能直接将 noise+img,不然最终出来的是一片空白和零星几个噪点,原因在于cv2.imshow输入要求是 0-1 float 或者 0-255 int。

代码:

import cv2
import random
import numpy as np
img = cv2.imread('A.png')# 产生高斯随机数
noise = np.random.normal(0,50,size=img.size).reshape(img.shape[0],img.shape[1],img.shape[2])
# 加上噪声
img = img + noise
img = np.clip(img,0,255)
img = img/255   cv2.imshow('Gauss noise',img)
cv2.waitKey(0)

3)高斯滤波

高斯滤波是一种线性平滑滤波,一般用于消除高斯噪声。对于每一个像素点的值,是由其本身和邻域内的其他像素值经过加权平均后得到。

二维高斯函数:

具体过程:

代码:使用cv2.GaussianBlur()函数

注意高斯模糊半径不能为偶数

滤波结果:

2、泊松噪声

简言之就是符合泊松分布的噪声模型,又称散粒噪声。

使用**np.random.poisson()**函数

import cv2
import random
import numpy as np
img = cv2.imread('A.png')# 产生泊松噪声
noise = np.random.poisson(lam=20,size=img.shape).astype('uint8')# 加上噪声
img = img + noise
np.clip(img,0,255)
img = img/255cv2.imshow('Poisson noise',img)
cv2.waitKey(0)

λ值越大,噪声程度越深。

3、椒盐噪声

椒盐噪声又称为脉冲噪声,是在图像上随机出现黑色白色的像素,顾名思义就是椒盐噪声 = 椒噪声(值为0,黑色) + 盐噪声(值为255,白色)

直接上代码:

import cv2
import random
import numpy as np
img = cv2.imread('A.png')# 转化成向量
x = img.reshape(1,-1)  
# 设置信噪比
SNR = 0.85
# 得到要加噪的像素数目
noise_num = x.size * (1-SNR)
# 得到需要加噪的像素值的位置
list = random.sample(range(0,x.size),int(noise_num))for i in list:if random.random() >= 0.5:x[0][i] = 0else:x[0][i] = 255
img1 = x.reshape(img.shape)cv2.imshow('salt&pepper noise',img1)
cv2.waitKey(0)

SNR越小,噪声越大。

4、瑞利噪声

一般是由由信道不理想引起的,它与信号的关系是相乘,信号在它在,信号不在他也就不在。

瑞利密度对倾斜形状直方图的建模非常有用。

在生成瑞利噪声的时候,其实采用的是**np.random.rayleigh()** 方法生成,而这个方法就是根据第二个公式来的,所以只需要指定1个参数,得到的分布和第一个公式相比本质是相同的。

代码:

import cv2
import random
import numpy as np
img = cv2.imread('A.png')# 产生瑞利噪声
sigma = 70.0
noise = np.random.rayleigh(sigma, size=img.shape)
# 可以试试下面这个效果
# noise = np.random.rayleigh(img, size=img.shape)# 加上噪声
img = img + noise
np.clip(img,0,255)
img = img/255cv2.imshow('Rayleigh noise',img)
cv2.waitKey(0)
print(img.shape)

5、爱尔兰(伽马)噪声

概率密度函数(PDF)如下:(b是一个正整数)

指数分布和卡方分布其实可以看成是伽马分布的特殊形式。

b = 1时:指数分布;

b =n/2,a = 1/2时:卡方分布。

代码:

noise = np.random.gamma(shape=10.0,scale=10.0,size=img.shape)
#其他部分同上

6、均匀噪声

noise = np.random.uniform(50,100,img.shape)
#其他部分同上

二、去噪方法

1、均值滤波

1.1 算术平均滤波

import cv2
import random
import numpy as np
img = cv2.imread('A.png')# 产生高斯随机数
noise = np.random.normal(0,50,size=img.size).reshape(img.shape[0],img.shape[1],img.shape[2])
# 加上噪声
img = img + noise
img = np.clip(img,0,255)
img = img/255   # 算术平均滤波
img1 = np.transpose(img,(2,0,1))  #转换成[channel,H,W]形式
m = 3   #定义滤波核大小
n = 3
rec_img = np.zeros((img1.shape[0],img1.shape[1]-m+1,img1.shape[2]-n+1))
for channel in range(rec_img.shape[0]):for i in range(rec_img[channel].shape[0]):for j in range(rec_img[channel].shape[1]):rec_img[channel][i,j] = img1[channel][i:i+m,j:j+n].sum()/(m*n)
rec_img = np.transpose(rec_img,(1,2,0))cv2.imshow('average',rec_img)
cv2.waitKey(0)

具体过程可以配合下图理解

去噪效果:

1.2 几何均值滤波

import cv2
import random
import numpy as np
img = cv2.imread('A.png')# 产生高斯随机数
noise = np.random.normal(0,50,size=img.size).reshape(img.shape[0],img.shape[1],img.shape[2])
# 加上噪声
img = img + noise
img = np.clip(img,0,255)
img = img/255   # 几何均值滤波
img1 = np.transpose(img,(2,0,1))  #转换成[channel,H,W]形式
m = 3   #定义滤波核大小
n = 3
rec_img = np.zeros((img1.shape[0],img1.shape[1]-m+1,img1.shape[2]-n+1))
for channel in range(rec_img.shape[0]):for i in range(rec_img[channel].shape[0]):for j in range(rec_img[channel].shape[1]):rec_img[channel][i,j] = np.power(np.prod(img1[channel][i:i+m,j:j+n]),1/(m*n))
rec_img = np.transpose(rec_img,(1,2,0))cv2.imshow('average',rec_img)
cv2.waitKey(0)

去噪效果:

几何均值滤波对0值是非常敏感,缺陷也很明显,那就是当窗口内像素只要有一个值为0,则其计算得到的值就是0。

1.3 谐波平均滤波

rec_img[channel][i,j] = 1/(np.power(img1[channel][i:i+m,j:j+n],-1).sum())*(m*n)
# 其余部分同上

该方法既能处理盐粒噪声,又能处理类似于于高斯噪声的其他噪声,但是不能处理胡椒噪声

2、统计排序滤波

2.1 中值滤波

我们非常熟悉的一种去噪方法,它是用像素邻域中的灰度中值来代替像素的值。

代码:

import cv2
import random
import numpy as np
img = cv2.imread('A.png')# 产生高斯随机数
noise = np.random.normal(0,50,size=img.size).reshape(img.shape[0],img.shape[1],img.shape[2])
# 加上噪声
img = img + noise
img = np.clip(img,0,255)
img = img/255   # 中值滤波
img1 = np.transpose(img,(2,0,1))  #转换成[channel,H,W]形式
m = 3   #定义滤波核大小
n = 3
rec_img = np.zeros((img1.shape[0],img1.shape[1]-m+1,img1.shape[2]-n+1))
for channel in range(rec_img.shape[0]):for i in range(rec_img[channel].shape[0]):for j in range(rec_img[channel].shape[1]):rec_img[channel][i,j] = np.median(img1[channel][i:i+m,j:j+n])
rec_img = np.transpose(rec_img,(1,2,0))cv2.imshow('median',rec_img)
cv2.waitKey(0)

去噪效果:

或者直接使用cv2.medianBlur()函数

import cv2
import random
import numpy as np
img = cv2.imread('A.png')# 产生高斯随机数
noise = np.random.normal(0,50,size=img.size).reshape(img.shape[0],img.shape[1],img.shape[2])
# 加上噪声
img = img + noise
img = np.clip(img,0,255)
img = np.uint8(img)# 中值滤波
rec_img = cv2.medianBlur(img,3)cv2.imshow('median',rec_img)
cv2.waitKey(0)

2.2 最大值和最小值滤波

代码:

rec_img[channel][i,j] = (np.amax(img1[channel][i:i+m,j:j+n]) + np.amin(img1[channel][i:i+m,j:j+n]))/2

对高斯噪声处理的滤波效果:

2.4 修正阿尔法均值滤波

处理方法:在邻域 S x y S_{xy} Sxy​ 内删除 d / 2 d/2 d/2个最低灰度值和 d / 2 d/2 d/2个最高灰度值。 g R ( r , c ) g_{R}(r,c) gR​(r,c)表示 S x y S_{xy} Sxy​ 中剩下的 m n − d mn-d mn−d个像素。

d = 0 d=0 d=0: 变成算术平均滤波

d = m n − 1 d=mn-1 d=mn−1:中值滤波

代码:

import cv2
import random
import numpy as np
img = cv2.imread('A.png')# 产生高斯随机数
noise = np.random.normal(0,50,size=img.size).reshape(img.shape[0],img.shape[1],img.shape[2])
# 加上噪声
img = img + noise
img = np.clip(img,0,255)
img = img/255   # 修正阿尔法均值滤波
img1 = np.transpose(img,(2,0,1))  #转换成[channel,H,W]形式
m = 3  #定义滤波核大小
n = 3
d = 4    #d取偶数
rec_img = np.zeros((img1.shape[0],img1.shape[1]-m+1,img1.shape[2]-n+1))
for channel in range(rec_img.shape[0]):for i in range(rec_img[channel].shape[0]):for j in range(rec_img[channel].shape[1]):img2 = np.sort(np.ravel(img1[channel][i:i+m,j:j+n]))  #np.ravel():多维数组变成一维数组rec_img[channel][i,j] = (img2[int(d/2):-int(d/2)].sum())*(1/(m*n-d))
rec_img = np.transpose(rec_img,(1,2,0))cv2.imshow('alpha average',rec_img)
cv2.waitKey(0)

去噪效果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/211683.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学习篇】Linux中grep、sed、awk

Linux 文本处理三剑客 – awk, sed, grep grep过滤文本 https://zhuanlan.zhihu.com/p/561445240 grep 是 Linux/Unix 系统中的一个命令行工具,用于从文件中搜索文本或字符串。grep 代表全局正则表达式打印。当我们使用指定字符串运行 grep 命令时,如…

聚类笔记/sklearn笔记:Affinity Propagation亲和力传播

1 算法原理 1.1 基本思想 将全部数据点都当作潜在的聚类中心(称之为 exemplar )然后数据点两两之间连线构成一个网络( 相似度矩阵 )再通过网络中各条边的消息( responsibility 和 availability )传递计算出各样本的聚类中心。 1.2 主要概念 Examplar聚类中心similarity S(i…

Java入门级基础教学(史上最详细的整合)

目录 一:基础语法 1.“Hello word” 2.Java的运行机制 3. Java基本语法 1.注释、标识符、关键字 2.数据类型(四类八种) 4.类型转换 1.自动转换 2.强制转换 5.常量和变量 1.常量 2.变量 3.变量的作用域 6.运算符 1.算数运算符 …

Android11编译第七弹:串口文件读写

问题:需要对SIM卡进行管理,支持APP切换SIM卡。此功能需要访问串口文件,并且对串口文件进行读写。APP操作串口文件/dev/ttyUSB1时,串口文件打开失败。 2023-11-23 10:59:44.092 14264-14264 MULTI_CARD_SerialHandle com.wellnkio…

一款专为POS机设计的芯片解决方案

一、基本概述 HCM8003设计用于磁条读卡器系统。它会从F/2F恢复时钟和数据信号磁产生的数据流头HCM8003将用于数据速率从200到15000比特每秒。 二、典型电路 内部数据的采集和跟踪这个范围是自动的。可以应用于POS机终端设备、磁卡门禁系统、身份识别等场合。 三、引脚定义 四…

《洛谷深入浅出基础篇》P4017最大食物链————拓扑排序

上链接:P4017 最大食物链计数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P4017 上题干: 题目背景 你知道食物链吗?Delia 生物考试的时候,数食物链条数的题目全都错了,因为她总是…

科技与艺术如何交织出“理想之家”?三星电视给出家电行业最优解答

作者 | 曾响铃 文 | 响铃说 理想的家,是什么样子? 关于这个问题,社交媒体上有形形色色的答案。很多人的梦中情屋是原木风、奶油色,点缀着绿意盎然的植物;还有一些人的Dream house是用全屋智能将科技感拉满,再配上打…

深兰科技“汉境”入选2023年湖北省人工智能十大优秀应用案例

11月18日,央视“专精特新制造强国”城市大会在湖北武汉召开。会上,正式发布了“湖北省工业互联网标识十大优秀应用案例”,由深兰科技(武汉)股份有限公司基于AIGC多模态融合大模型技术开发打造的江汉路步行街元宇宙场景应用——汉境&#xff0…

如何使用springboot服务端接口公网远程调试——实现HTTP服务监听

🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、数据结构、算法模板 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 本地环境搭建1.1 环境参数1.2 搭建springboot服务项目 二. 内网穿透…

ubuntu安装cuda驱动报错及解决,屡试不爽

机器重启输入nvidia-smi提示如下错误,字面意思就是驱动和库不匹配 Failed to initialize NVML: Driver/library version mismatch 查看一下nvidia相关库 sudo dpkg --list | grep nvidia-* 将所有已安装库卸载 sudo apt purge nvidia-* 重新安装驱动 sudo ./NVIDIA-Linux-…

护法革命:CIMIVO+SOTUY洗前发膜让发丝重获“芯”生

爱美之心人皆有之,经常烫染或者是在太阳下暴晒,都会对发丝造成一定的伤害,一旦发丝受损,就会导致发芯内部角蛋白流失、化学键连接断裂,进而出现各种发质问题。为此,日本知名化妆品集团NABOCUL旗下发芯修护引领品牌ENNEO创新研发两大核心成分:CIMIVO、SOTUY,能够从根源修护发芯内…

无需公网IP,使用内网穿透实现公网访问本地OpenWRT管理界面

文章目录 1.openWRT安装cpolar2.配置远程访问地址3.固定公网地址 简单几步实现在公网环境下远程访问openWRT web 管理界面,使用cpolar内网穿透创建安全隧道映射openWRT web 界面面板443端口,无需公网IP,无需设置路由器。 1.openWRT安装cpola…