卷积神经网络(AlexNet)鸟类识别

文章目录

  • 一、前言
  • 二、前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
    • 2. 导入数据
    • 3. 查看数据
  • 二、数据预处理
    • 1. 加载数据
    • 2. 可视化数据
    • 3. 再次检查数据
    • 4. 配置数据集
  • 三、AlexNet (8层)介绍
  • 四、构建AlexNet (8层)网络模型
  • 五、编译
  • 六、训练模型
  • 七、模型评估
  • 八、保存and加载模型
  • 九、预测

一、前言

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

往期精彩内容:

  • 卷积神经网络(CNN)实现mnist手写数字识别
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)识别海贼王草帽一伙
  • 卷积神经网络(ResNet-50)鸟类识别

来自专栏:机器学习与深度学习算法推荐

二、前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")

2. 导入数据

import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号import os,PIL# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)import pathlib
data_dir = "bird_photos"data_dir = pathlib.Path(data_dir)

3. 查看数据

image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

图片总数为: 565

二、数据预处理

文件夹数量
Bananaquit166 张
Black Throated Bushtiti111 张
Black skimmer122 张
Cockatoo166张

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

batch_size = 8
img_height = 227
img_width = 227
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 565 files belonging to 4 classes.
Using 452 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 565 files belonging to 4 classes.
Using 113 files for validation.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']

2. 可视化数据

plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")
plt.imshow(images[1].numpy().astype("uint8"))

3. 再次检查数据

for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(8, 227, 227, 3)
(8,)
  • Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状240x240x3的8张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(8,)的张量,这些标签对应8张图片

4. 配置数据集

AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、AlexNet (8层)介绍

AleXNet使用了ReLU方法加快训练速度,并且使用Dropout来防止过拟合

AleXNet (8层)是首次把卷积神经网络引入计算机视觉领域并取得突破性成绩的模型。获得了ILSVRC 2012年的冠军,再top-5项目中错误率仅仅15.3%,相对于使用传统方法的亚军26.2%的成绩优良重大突破。和之前的LeNet相比,AlexNet通过堆叠卷积层使得模型更深更宽。

四、构建AlexNet (8层)网络模型

from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout,BatchNormalization,Activationimport numpy as np
seed = 7
np.random.seed(seed)def AlexNet(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(96, (11,11), strides=4, name='block1_conv1')(input_tensor)x = BatchNormalization()(x)x = Activation('relu')(x)x = MaxPooling2D((3,3), strides=2, name = 'block1_pool')(x)# 2nd blockx = Conv2D(256, (5,5), padding='same', name='block2_conv1')(x)x = BatchNormalization()(x)x = Activation('relu')(x)x = MaxPooling2D((3,3), strides=2, name='block2_pool')(x)# 3rd blockx = Conv2D(384, (3,3), activation='relu', padding='same',name='block3_conv1')(x)# 4th blockx = Conv2D(384, (3,3), activation='relu', padding='same',name='block4_conv1')(x)# 5th blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = MaxPooling2D((3,3), strides=2, name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu',  name='fc1')(x)x = Dropout(0.5)(x)x = Dense(4096, activation='relu', name='fc2')(x)x = Dropout(0.5)(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=AlexNet(1000, (img_width, img_height, 3))
model.summary()
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 227, 227, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 55, 55, 96)        34944     
_________________________________________________________________
batch_normalization (BatchNo (None, 55, 55, 96)        384       
_________________________________________________________________
activation (Activation)      (None, 55, 55, 96)        0         
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 27, 27, 96)        0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 27, 27, 256)       614656    
_________________________________________________________________
batch_normalization_1 (Batch (None, 27, 27, 256)       1024      
_________________________________________________________________
activation_1 (Activation)    (None, 27, 27, 256)       0         
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 13, 13, 256)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 13, 13, 384)       885120    
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 13, 13, 384)       1327488   
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 13, 13, 256)       884992    
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 6, 6, 256)         0         
_________________________________________________________________
flatten (Flatten)            (None, 9216)              0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              37752832  
_________________________________________________________________
dropout (Dropout)            (None, 4096)              0         
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
dropout_1 (Dropout)          (None, 4096)              0         
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 62,379,752
Trainable params: 62,379,048
Non-trainable params: 704
_________________________________________________________________

五、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器,我这里改变了学习率。
# opt = tf.keras.optimizers.Adam(learning_rate=1e-7)model.compile(optimizer="adam",loss='sparse_categorical_crossentropy',metrics=['accuracy'])

六、训练模型

epochs = 20history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/20
57/57 [==============================] - 5s 30ms/step - loss: 9.2789 - accuracy: 0.2166 - val_loss: 3.2340 - val_accuracy: 0.3363
Epoch 2/20
57/57 [==============================] - 1s 14ms/step - loss: 0.9329 - accuracy: 0.6224 - val_loss: 1.1778 - val_accuracy: 0.5310
Epoch 3/20
57/57 [==============================] - 1s 14ms/step - loss: 0.7438 - accuracy: 0.6747 - val_loss: 1.9651 - val_accuracy: 0.5133
Epoch 4/20
57/57 [==============================] - 1s 14ms/step - loss: 0.8875 - accuracy: 0.7025 - val_loss: 1.5589 - val_accuracy: 0.4602
Epoch 5/20
57/57 [==============================] - 1s 14ms/step - loss: 0.6116 - accuracy: 0.7424 - val_loss: 0.9914 - val_accuracy: 0.4956
Epoch 6/20
57/57 [==============================] - 1s 15ms/step - loss: 0.6258 - accuracy: 0.7520 - val_loss: 1.1103 - val_accuracy: 0.5221
Epoch 7/20
57/57 [==============================] - 1s 13ms/step - loss: 0.5138 - accuracy: 0.8034 - val_loss: 0.7832 - val_accuracy: 0.6726
Epoch 8/20
57/57 [==============================] - 1s 14ms/step - loss: 0.5343 - accuracy: 0.7940 - val_loss: 6.1064 - val_accuracy: 0.4602
Epoch 9/20
57/57 [==============================] - 1s 14ms/step - loss: 0.8667 - accuracy: 0.7606 - val_loss: 0.6869 - val_accuracy: 0.7965
Epoch 10/20
57/57 [==============================] - 1s 16ms/step - loss: 0.5785 - accuracy: 0.8141 - val_loss: 1.3631 - val_accuracy: 0.5310
Epoch 11/20
57/57 [==============================] - 1s 15ms/step - loss: 0.4929 - accuracy: 0.8109 - val_loss: 0.7191 - val_accuracy: 0.7345
Epoch 12/20
57/57 [==============================] - 1s 15ms/step - loss: 0.4141 - accuracy: 0.8507 - val_loss: 0.4962 - val_accuracy: 0.8496
Epoch 13/20
57/57 [==============================] - 1s 15ms/step - loss: 0.2591 - accuracy: 0.9148 - val_loss: 0.8015 - val_accuracy: 0.8053
Epoch 14/20
57/57 [==============================] - 1s 15ms/step - loss: 0.2683 - accuracy: 0.9079 - val_loss: 0.5451 - val_accuracy: 0.8142
Epoch 15/20
57/57 [==============================] - 1s 14ms/step - loss: 0.2925 - accuracy: 0.9096 - val_loss: 0.6668 - val_accuracy: 0.8584
Epoch 16/20
57/57 [==============================] - 1s 14ms/step - loss: 0.4009 - accuracy: 0.8804 - val_loss: 1.1609 - val_accuracy: 0.6372
Epoch 17/20
57/57 [==============================] - 1s 14ms/step - loss: 0.4375 - accuracy: 0.8446 - val_loss: 0.9854 - val_accuracy: 0.7965
Epoch 18/20
57/57 [==============================] - 1s 14ms/step - loss: 0.3085 - accuracy: 0.8926 - val_loss: 0.6477 - val_accuracy: 0.8761
Epoch 19/20
57/57 [==============================] - 1s 15ms/step - loss: 0.1200 - accuracy: 0.9538 - val_loss: 1.8996 - val_accuracy: 0.5398
Epoch 20/20
57/57 [==============================] - 1s 15ms/step - loss: 0.3378 - accuracy: 0.9095 - val_loss: 0.9337 - val_accuracy: 0.8053

七、模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

八、保存and加载模型

 保存模型
model.save('model/my_model.h5')
# 加载模型
new_model = tf.keras.models.load_model('model/my_model.h5')

九、预测

# 采用加载的模型(new_model)来看预测结果plt.figure(figsize=(10, 5))  # 图形的宽为10高为5for images, labels in val_ds.take(1):for i in range(8):ax = plt.subplot(2, 4, i + 1)  # 显示图片plt.imshow(images[i].numpy().astype("uint8"))# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0) # 使用模型预测图片中的人物predictions = new_model.predict(img_array)plt.title(class_names[np.argmax(predictions)])plt.axis("off")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/211841.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue3-provide和inject

作用和场景:顶层组件向任意的底层组件传递数据和方法,实现跨层组件通信 跨层传递普通数据: 1.顶层组件通过provide函数提供数据 2.底层组件通过inject函数获取数据 既可以传递普通数据,也可以使用ref传递响应式数据&#xff08…

创新洞察|展望2030 – 企业数字化转型的10大趋势(阿里研究院)

企业是否一定要 数字化创新 转型?究竟如何数字化转型?难点和坑又是什么?阿里研究院副院长针对未来十年中国的数字化转型提出十个方面需要关注的趋势:1.大国优势 2. 重构的消费者决策体系 3. 下一代数字原生企业 4. 所有企业都会成…

消息中间件——RabbitMQ(五)快速入门生产者与消费者,SpringBoot整合RabbitMQ!

前言 本章我们来一次快速入门RabbitMQ——生产者与消费者。需要构建一个生产端与消费端的模型。什么意思呢?我们的生产者发送一条消息,投递到RabbitMQ集群也就是Broker。 我们的消费端进行监听RabbitMQ,当发现队列中有消息后,就进…

Endnote软件添加期刊引用格式

在下述网址中,找到你想要添加的期刊,下载引用格式文件(后缀为.ens格式) https://endnote.com/downloads/styles/?wpv_post_searchInformationfusion&wpv_aux_current_post_id12829&wpv_view_count12764-TCPID12829 下载…

C语言——求分段函数 y=f(x)的值

求分段函数 yf(x)的值,f(x)的表达式如下: #define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h> int main() {int x,y;printf("请输入x的值&#xff1a;");scanf("%d",&x);if(x>5){yx3;}else if(x>0 && x<5){y0;}elsey2*x30;pr…

【双指针】有效三角形的个数

有效三角形的个数 611. 有效三角形的个数 - 力扣&#xff08;LeetCode&#xff09; 题目描述 给定一个包含非负整数的数组 nums &#xff0c;返回其中可以组成三角形三条边的三元组个数。 示例 1: 输入: nums [2,2,3,4] 输出: 3 解释:有效的组合是: 2,3,4 (使用第一个 2…

Linux中flask项目开启https访问

1.下载阿里云免费证书 2.项目添加https配置 3.服务器开启https访问 3.1 重新安装OpenSSL 3.2.重新安装Python 上一次已经讲过Linux安装部署Python: Linux安装Python3.10与部署flask项目实战详细记录,今天记录一下Python项目如何支持https访问…

CAN基础知识

CAN 简介 CAN 是 Controller Area Network 的缩写&#xff08;以下称为 CAN&#xff09;&#xff0c;是 ISO 国际标准化的串行通信 协议。在当前的汽车产业中&#xff0c;出于对安全性、舒适性、方便性、低公害、低成本的要求&#xff0c;各种 各样的电子控制系统被开发了出来…

java游戏制作-王者荣耀游戏

一.准备工作 首先创建一个新的Java项目命名为“王者荣耀”&#xff0c;并在src下创建两个包分别命名为“com.sxt"、”com.stx.beast",在相应的包中创建所需的类。 创建一个名为“img”的文件夹来储存所需的图片素材。 二.代码呈现 package com.sxt;import javax.sw…

人工智能今天能为你做什么?生成式人工智能如何改变技术文档领域

▲ 搜索“大龙谈智能内容”关注GongZongHao▲ 作者 | Fabrice Lacroix 大型语言模型&#xff08;LLM&#xff09;和生成式人工智能&#xff08;GenAI&#xff09;&#xff0c;尤其是ChatGPT&#xff0c;这些是引领科技革新的新兴技术。它们不仅在科技界引起了轩然大波&#x…

JSP:Servlet

Servlet处理请求过程 B/S请求响应模型 Servlet介绍 JSP是Servlet的一个成功应用&#xff0c;其子集。 JSP页面负责前台用户界面&#xff0c;JavaBean负责后台数据处理&#xff0c;一般的Web应用采用JSPJavaBean就可以设计得很好了。 JSPServletJavaBean是MVC Servlet的核心…

电脑键盘推荐

一、键盘分类 &#xff08;1&#xff09;键位个数 目前有75&#xff0c;84&#xff0c;87&#xff0c;98&#xff0c;104&#xff0c;108的。 &#xff08;2&#xff09;薄膜键盘和机械键盘 薄膜键盘就是大多数办公室常见的键盘&#xff0c;主要打一个便宜&#xff0c;耐造…